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SPEXTRAL THEORY OF SEMII31)UNDED OPEXATORS AND THEIR USE *& 
IN SPECTFLAL ANALYSIS OF DIFI.TERENTIAL OPERATORS 

K.Friedrichs 

The d i r ec t  methods of the calculus of variations are applied 

t o  solve the  eigenvalue problems of l i nea r  p a r t i a l  differ- 

e n t i a l  equations t h a t  have no conventional discrete  spectrum, 

and t o  thus obtain the  spectral  theory of quantum-theoretical 

energy operators, based on Schrzdinger's representation. The 

notations of the  general operator theory of t he  "abstract" 

Rilbert  space are used as basis f o r  developing the  spec t ra l  

theory of semibounded symmetric operators. 

c r i t e r i a  f o r  proving tha t  the  spectrum is  pa r t ly  d iscre te  are 

Rilbert 's and Weylrs 

extrapolated t o  sefibounded operators. The theory i s  applied 

t o  d i f f e ren t i a l  operators, f o r  the  typ ica l  case of n = 1, 2, 3. 

It is  demonstrated tha t  the  eigenelements of the  projection 

operators a re  twice continuously different iable  functions. A 

method i s  given f o r  an accurate determination of t he  nature of 

t he  spectrum, f o r  t he  auxiliary poten t ia l  V. 

The present investigation was induced by the  desire  t o  use the  d i rec t  

methods of the calculus of variations f o r  solving the  eigenvalue problems of 

such l i nea r  p a r t i a l  d i f f e r e n t i a l  equations tha t  have no ordinary d iscre te  

spectrum and thus are not accessible t o  the  calculus of variations.  

ly, we meant t o  obtain t h e  spectr& theory of the  quantum-theoretical energy 

Specifical- 

46 Numbers i n  the margin indicate  pagination i n  the  or ig ina l  foreign text. 
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operators, based on Schr'ddingerf s representation. 

I n  t h i s  attempt, it was  found tha t  a large number of equivalent conclusions 

and concepts i n  the various problems can be uniformly combined by subjecting 

them t o  the  symbolism of the general operator theory of the  Hilbert space; 

specifical3y, we mean here the  "abstract" Hilbert space as it had or iginal ly  

been logical ly  worked out by v.Neumann (Bib1.7.2). The previously preferred 

representation of t he  Hilbert space by i n f i n i t e l y  many variables was found too 

awkward f o r  t he  representation of function spaces. 

earlier by v.Neumann (Bibl.7.1), the  representation of unbounded l inea r  operators 

by i n f i n i t e  matrices may actual ly  be misleading. 

In addition, as mentioned 

Conversely, it was  found unnecessary t 9  make use of the  general spec t ra l  

theory of unbounded operators as developed by v.Neumann since we only took s e m i -  

bounded operators i n t o  consideration; f o r  this type, the  spec t ra l  theory can be 

d i r ec t ly  reduced t o  tha t  of the bounded operators. 

t o r s  are semibounded downward. 

equations by the calculus of variations, the  semiboundedness was u t i l i zed  t o  i t s  

I n  fac t ,  most energy opera- 

Similarly, i n  t reat ing eigenvalue d i f f e ren t i a l  

major extent. 

A theory f o r  semibounded operators was developed by A.Wintner (Bibl.13); 

however, this refers  mainly t o  i n f i n i t e  matrices. 

Unti l  now, eigenvalue problems of d i f f e ren t i a l  equations had frequently 

been reduced t o  the  Hilbert, theory [see f o r  example (Biblo,6)l but i n  such a /466 

manner t h a t  the  expl ic i t ly  known Green function was used f o r  finding the  bounded 

reciprocal of t he  d i f f e r e n t i a l  operator. ' Usually, cases were involved i n  which 

a d iscre te  spectrum occurred. 

Beyond this, the  theory of d i f f e ren t i a l  equations with s ingular i t ies ,  as 

developed by H.Wey1, (Bib1.12.1, 12.2)* was predominantly applied. 
35 (next page) 
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Weylfs theory was  formulated i n  a more general manner by Stone (BibLl0.2) 

and expanded different ly ,  without reduction t o  in t eg ra l  operators. 

Essentially, this theory uses the well-known two-parameter family of solu- 

t ions of d i f f e ren t i a l  equations; this i s  the  reason f o r  t he  d i f f i cu l ty  en- 

countered i n  attempting a d i rec t  extrapolation t o  p a r t i a l  d i f f e ren t i a l  equa- 

t iom3H6 * 

In P a r t  I of this report ,  we are developing the  spec t ra l  theory of semi- 

bounded symmetric operators i n  the  abstract  Hilbert space. 

readi ly  obtained when considering not only the  operators but a l so  the  corre- 

sponding forms. 

i * e * ,  l e t  i t  be assumed tha t  a posi t ive y ex i s t s  so tha t ,  with the  unitary 

form H, t he  following i s  valid: 

This theory i s  

Without res t r ic t ion ,  l e t  t h i s  form G be positive-semibounded, 

G 2 y H .  

The form G can be conceived as the  dimensional form of a new Hilbert space 

35 Weyl t rea ted  the eigenvalue equation 

f o r  a function u(x) 

are continuous i n  x 

= 0 i s  established. 

i n  x 2 0. Here, it i s  assumed tha t  p > 0 and tha t  p and q 

2 0. A t  x = 0, a boundary condition cos 9 u + s i n  8 = 
dx 

Weyl demonstrated t h a t  two cases can occur: 
1) the  c r i t i c a l  point case i n  which, i n  addition t o  the existence of 

03 

u2dx, no fur ther  condition need be made f o r  u at’ x = a; 

2) . the l i m i t  cycle case i n  which a cyclic one-parameter family of 
0 

boundary conditions at  x = w i s  available f o r  selection. 
Weyl a l so  gave a method f o r  obtaining the  eigenfunctions of t he  continuous 

spectrum from the  solutions of the  eigenvalue d i f f e r e n t i a l  equation, not located 
i n  the  Hilbert space, by integrat ion t o  the  eigenvalue. 
-jt36 I n  writ ing this paper, we noted t h a t  Carleman (Bibl.1) mentioned tha t  it i s  
easy t o  apply t h e  Weyl theory t o  equations with several  variables, e i t he r  di- 
r ec t ly  o r  over t he  theory of t he  Hermitian in t eg ra l  equations. 
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( a  subspace of the  or ig ina l  space). Then H becomes a bounded form. The 14-67 

spec t ra l  analysis, known f o r  the  bounded form, thus leads d i r ec t ly  t o  the  spec- 

t r a l  analysis of the' semibounded" form G. 

Such semibounded forms G can a lmys  be obtained from semibounded operators. 

The spec t ra l  analysis of such operators, however, i s  possible and can be ob- 

tained i n  this manner bf and only i f  these operators are "selfadjoint" (hyper- 

maximal). T h i s  condition, f o r  the  case of semibounded operators,can be re- 

placed by considerably weaker types which are a l so  eas ie r  t o  ver i fy  f o r  our 

d i f f e ren t i a l  operators. 

Finally, we w i l l  extrapolate Hilbertts and Weylts c r i t e r i a  (Bibl.5.2, 12.3) 

f o r  p a r t i a l  discreteness of the  spectrum, t o  semibounded operators. 

In  P a r t  I1 of our paper, the  above theory w i l l  be applied t o  d i f f e ren t i a l  

operators. There, we are r e s t r i c t ing  ourselves t o  two typica l  cases. Let the  

operator be 

applicable t o  the  functions f(x1, . . ., x,) . Only the  case n = 1, 2, 3 W i l l  be 

continued t o  the  end. 

t he  steady function v, bounded downward; secondly, i n  t h i s  case (2) a singulari- 

t y  of v i n  one point i s  admitted; thirdly,  a f in i te  region i s  used along whose 

boundary the  function f [case (3) l  o r  i t s  normal derivative i s  t o  vanish 

[case (&)I,. 

First, we treat the  case (1) of the  infinite region with 

For convenience, this par t icu lar  region i s  selected as l i n e  segment, 

c i rc le ,  and sphere. The results f o r  the  cases of t he  f i n i t e  region are not new, 

j:- T h i s  a l so  of fe rs  a simple access t o  t h e  spectral  theory of a rb i t ra ry  unbounded 
selfadjoint  l i nea r  operators. This new method, compared t o  the  conventional 
methods by v.Neumann (Bib1.7.2), Stone (Bibl.lO.l), and Fr.Riesz (Bibl.S), 
offers t he  main advantage tha t  it does not presuppose tha t  t he  basic E l b e r t  
space be complex; this method wi l l  be used elsewhere. 



but  t h e i r  treatment was  included here so as t o  demonstrate i n  how far the  theory 

of a l l  cases can be developed i n  common. 

The first problem is  t o  indicate  t h e  spaces of the  permissible functions. 

A t  first, these are no I-Iilbert spaces but a r e  continued t o  Hilbert spaces by an 

adjunction of i d e a l  elements. We w i l l  not rea l ize  these i d e a l  elements by 

cpadratically integrable functions according t o  Lebesgue, mainly f o r  the  reason 

t h a t  it can be demonst&ated t h a t  t he  "eigenelements" of specif ic  i n t e re s t  

here belong already t o  the  in i t ia l  function spaces". 

/468 

Similarly, the operator i s  f irst  explained only i n  a space of twice dif-  

ferent iable  functions and then i s  closed off formally but uniquely. 

The main problem i s  t o  demonstrate t ha t  this operator i s  selfadjoint .  I n  

fac t ,  this const i tutes  the  essent ia l  d i f f i c u l t i e s  of the  en t i r e  theory; these 

can be overcome by extrapolating the  method of reasoning developed specif ical ly  

by Courant (Bibl.2.1, 2.3, 2.6, 4.1), which i s  decisive i n  the  d i rec t  methods 

of t h e  calculus of variations.  

It w i l l  be found tha t ,  by coordination with the  abstract  operator theory, 

not much can be saved i n  the  theories required f o r  concrete d i f f e ren t i a l  o p e r a  

to r s .  Aside from the  somewhat more systematic arrangement, one gains the  possi- 

b i l i t y  of simultaneously t rea t ing  cases i n  which a discontinuous spectrum 

occurs . 
The main r e su l t  of P a r t  I1 is the  spectral  analysis of the  d i f f e r e n t i a l  

operator: 'By this we mean the  existence of a "spectral  family'*, namely, a 

family of projection operators i n  the  sense of t he  general spectral  theory (see 

Part  I, Sect.4). I n  addition, it i s  demonstrated tha t  t h e  eigenelements of 

" h i s  process corresponds fully t o  the  method used by Hilbert i n  his reduction 
of the  in t eg ra l  equations t o  equations with infinitely many variables (Bib1.5.1). 

5 '  



these projection operators a re  twice continuously different iable  functions. We 

w i l l  not bother t o  represent these projection operators and t h e i r  eigenelements 

by means of solutions of the  eigenvalue d i f f e ren t i a l  equations. 

t he  eigenfunctions of t he  point eigenvalues, it follows d i r ec t ly  t h a t  they 

However, f o r  

s a t i s fy  t h e  eigenvalue d i f f e r e n t i a l  equation. 

functions of t he  continuous spectrum i n  the case of one dimension could be ob- 

tained from the  solutions of the  eigenvalue d i f f e ren t i a l  equation by integrat ing 

t o  the  eigenvalue. 

en t i re ly  possible, as we will show i n  another paper. 

i n  the general case of higher dimensionality, no arguments are available;  we 

a l so  do not believe tha t  this par t icu lar  point need be emphasized i n  the  in- 

vestigation. 

According t o  Weyl, t h e  eigen- 

In  the  separable cases with more dimensions, this i s  a l so  

For such a representation, 

Another r e su l t  r e l a t e s  t o  a discussion of t he  spectrum. Under simple con- 

di t ions f o r  t he  "accessory potent ia l"  v, the nature of t he  spectrum can be more 

accurately defined. We have here a discrete  point spectrum growing t o  i n f i n i t y  

i f  the  region i s  f i n i t e .  

auxiliary poten t ia l  v increases a t  i n f i n i t y  beyond a l l  bounds. 

if the auxi l iary poten t ia l  has a f ini te  lower l imi t  at inf in i ty ,  t h e  spectrum 

below this value w i l l  be discrete .  

The same i s  t rue  f o r  t he  i n f i n i t e  region, i f  the 

Conversely, /4-69 

These c r i t e r i a  correspond t o  one portion of t he  c r i t e r i a  established by 

Weyl i n  a theory of d i f f e r e n t i a l  equations with s ingular i t ies ;  however, they 

can be proved i n  a manner independent on the  number of variables. 

The present paper contains Part  I of these investigations;  Part  I1 w i l l  be 

published i n  one of t he  next issues.  
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PART 1 

SPECTRAL THEORY OF SElMIBOUNDED OPERATORS 

1. Basic Concepts 

We W i l l  first assemble a f e w  well-known (BibL7.2) basic concepts and 

theorems on forms and operators, using a system of notations sui table  for our 

o m  purposes so as t o  be independent of t h e  remaining l i t e r a tu re .  

A space 32, 8 ,  (3, 8 of elements x, h, g, f i s  t o  mean always a real l i nea r  

space with - unless s ta ted d i f fe ren t ly  - at least denumerably in f in i t e ly  m a n y  

l inear ly  independent elements 

A b i l inear  form coordinates, t o  each p a i r  of elements x, X I ,  a real number 

which i s  l inea r  i n  x and X I ;  we denote this* by 

We always assume 

i.e., t ha t  A be symmetric. 

kt a quadratic form xAx, consisting of such a b i l inear  form, be denoted 

as "never negative", i f  

x A x & O  

i s  val id;  f o r  such forms - as follows already from the known method of reason- 

rn ing  - t he  following Schwarz inequality i s  valid: 

4:- This symbolism is patterned after tha t  given by Dirac. 
be developed a l so  i n  the  complex space, with only minor and completely conven- 
t i ona l  modifications. 

Our en t i r e  theory can 
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This exqression i s  called posit ive-definite only i f  x = 0 always follows from 

XAX = 0. 

If, i n  a space 2, a metric 1x1 = -has been introduced by a positive- 

de f in i t e  "measure" XXX, then it w i l l  be possible t o  explain the  density of a 

set i n  T and the  convergence of a sequence x. 

A sequence x converges strong* (X) 

We will formulqte this as follows: 

I) Itin i t s e l f "  i f  Ixv - xu] -t 0, V, p a 

11) t o  x, i f  Ixy - X I  -t 0, v a 

i s  valid. 

If the  space i s  separable (i.e., i f  it contains a denumerable dense set) 

and closed (a l so  complete), meaning tha t  a l imiting element ex i s t s  f o r  each con- 

vergent sequence, then this space becomes known as an (abstract)  Hilbert space. 

Below, we will use a Hilbert space Q of elements h, with the  measure 

form* H. 

It i s  of importance f o r  our treatment t ha t  frequently subspaces of Q ,  such 

as 6, are used as Hilbert spaces with a different  measure such as G and tha t  

then both convergence and density a re  referred t o  these. 

f o r  example of convergence (G) and of Gdensi ty .  

I n  tha t  case, we speak 

Subspaces 3, 8, ... of Q, i n  which forms and operators are explained, w i l l  

always be assumed as H-dense i n  Q. 

An operator A explained i n  8 5 0,  coordinates an element h from Q FJith each 

element f from 3. 
To each operator A i n  Q, there  "belongs" the  form A i n  3: 

x- The usual notation i s  obtained on replacing H by a coma. 

8 



The operator i s  known as symmetric if it consti tutes t he  corresponding 

form; unless s ta ted  otherwise, operators W i l l  always be assumed as symmetric 

and linear. 

An operator B i n  8 is  denoted as bounded" i f  this i s  its form B; there  

exist two real numbers E;@, so t h a t  g(fHf) 5 ( f B f )  5 B(fHf) i s  val id  here. 

The next simple class  i s  represented by the semibounded forms.. A form G, 

defined i n  B 5 & - i s  known as positive-semibounded's' (downward) with the  

(lower) bound y i f  a bound y > 0 exists 'such tha t ,  f o r  a l l  elements g from 6, 

/472 

- - 

Correspondingly, an operator i s  known as positive-semibounded i f  it i s  the  

come sp o nding form . 
O f  importance f o r  what follows i s  the property of the "state of closure" 

tha t  positive-semibounded forms may possess. 

A positive-semibounded form G i s  known as closed i n  6 i f  t h e  space 6 i s  

closed, with gGg as measure. Then 6 i s  a l so  a Hilbert space with G as measure'"''. 

For (not necessarily semibounded) operators A, defined i n  dense subsets 3 

$5 The non-symmetric operator S i s  denoted as bounded i f  the following i s  valid 
f o r  f ,  f l  from 3: 

H+ Without the  assumption y > 0, the  form would be only semibounded but can 
always, by addition of (1 - _. y)  (gHg), be changed i n t o  a positive-semibounded 
form. 

+si::- It i s  easy t o  construct a denumerable Gdense subset (6) of 0 .  
separabi l i ty  of 6 - a denumerable H-dense set (B) exists i n  each subset% of 8 .  
kt us now form the  sequence of subsets 8, of @, characterized by t h e  condition 
gGg 5 n(gHg), 
denumerable H-dense subset o f@, ,  i s  then a l so  Gdense i n @ ,  and the  sum of 
the  (@,) W i l l  have the  property desired of (6). 

F i r s t  - 
* 

Each element g belongs t o  one of these. The set (a,), i .e*,  the * 
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of 8, v.Neumann (Bib1.7.3) introduced the  concept of the  state of closure on 

which the  above concept i s  patterned. 

following [similar t o  t h a t  mentioned by him (Bib1.7.6)I: 

His formulation i s  equivalent t o  the  

An operator A i n  3 i s  known as closed i f  the space 3 i s  closed, with 

as measure. 

2. Continuation by Closure 

The d i f f e ren t i a l  operators of prime in t e re s t  here usually a re  not given i n  

closed spaces and are  themselves not closed, whereas this property i s  presup- 

posed i n  the general spec t ra l  theory. Already f o r  this reason i t  i s  of i n t e r e s t  

t o  invest igate  whether spaces, operators, and forms can be continued t o  closed 

types i n  expanded def in i t ion  domains 

kt a space @' of elements h and with the measure H be given. To continue 

the  space Q' t o  a space 0 involves: adjoining additional - a l s o  denoted by h - / ~ 7 3  

( idea l )  elements, followed by, together with the elements from Q', addition and 

multiplication with r e a l  ,numbers, and then defining the  form H positive-definite. 

Then the following theorem applies: 

Theorem 1. I f  t he  space Q' with the measure H i s  separable, i t  can be 

continued t o  a closed, i.e.,  a Hilbert, space @, but only by one single p r o c e s s  

such tha t  Q' i s  dense i n  @. 

Proof. kt each self-converging sequence hv from Q' 

3; T h i s  means tha t  two continuations can be conformally mapped onto each other 
i n  such a manner t h a t  multiplication with real numbers, addition, and values of 
t h e  form H can be simultaneously mapped. 
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be coordinated with an i d e a l  l imiting element h, unless there i s  already a 

l imiting element of Q' i n  existence. 

nated e t h  two such sequences h lv ,  hzv f o r  which I hlv - h2v I + 0. 

quences h l v ,  hzv pos$ess l imit ing elements hl, hz (from Q' o r  i d e a l  types), 

then h l ~ H h 2 ~  Will have a Limiting value, which i s  defined here as hlHhz. 

Let  the  same l imit ing element be coordi- 

If two se- 

It i s  

easy t o  demonstrate t ha t  H i s  then b i l inear  and posit ive-definite i n  the  en t i r e  

space 8 and t h a t  any continuation, s t ipulated i n  theorem 1, can be produced i n  

tXs manner. 

kt an operator A be defined i n  3' S 8. To continue the  operator A i n  8 
i n  a subspace fJ of Q (8' < 3 5 Q) means t o  define it, f o r  the elements of 3 not 

located i n  3', such tha t  it w i l l  be l inear  and symmetric i n  a l l  of 3. 

The continuation of a form can be explained i n  an en t i re ly  similar manner. 

In  tha t  case, the following theorems apply: 

Theorem 2. A bounded operator B o r  a bounded form B, explained only i n  a 

dense subspace of 8, can be uniquely continued with the  same bounds i3 i n  Q". 

Theorem 3. An operator G, explained i n  the space 3' of the elements f ,  i s  

assumed t o  lead t o  a positive-semibounded form G with the  bound I y > 0 

Then, a subspace 6 of 6 containing 8' (8' 5 6 

can be continued t o  a closed form with the same bound - y .  6 and &are uniquely 

defined i f  8 i s  t o  be Gdense i n  C4 

Q) ex i s t s  i n  which the form G 
i n  6 

Let G i n  6 be the  closed form belonging t o  G i n  3' o r  G i n  8' * 

Before proving theorem 3, we should mention another theorem. 

Theorem 4. To each operator A i n  3' , there  exists a subspace 8 of Q, 

+e Similar statements apply a l so  t o  non-symmetric operators. 



containing 8 ,  i n  which a closed continuation of A can be defined. Here, 3 and 

A in 8 are uniquely defined i f  8t i s  t o  l i e  dense i n  8, with A2 + H as measure. 

A i n  3 is denoted as the  closed operator of A i n  8' . 
Theorem 4 and its simple proof were given by v.Neumann (Bib1.7.3) . 
Remark on theorems 3 and 4.. The operator G i n  $ i s  assumed t o  lead t o  the  

form G i n  8' . 
corresponding closed form. 

Let G i n  8 be the  corresponding closed operator and G i n  0 t he  

Then, 8 comes t o  l i e  i n  a. 

Let  us first prove this remark, and then prove theorem 4 and f i n a l l y  

theorem 3. 

Proof of the  remark. If f i s  located i n  5 ,  it can be H-approximated by a 

series f V  f o r  which a l so  G f y  w i l l  H-converge so t h a t  we a l so  have 

i.e., 

which means tha t  fv a lso converges with respect t o  G; the  l imiting element f ,  

according t o  theorem 3, must a l so  l i e  i n  6. 

N e x t ,  l e t  us br ie f ly  review the proof of theorem 4 according t o  v.Neumann. 

If, f o r  a sequence f y ,  t he  following form converges 

(11 - f p )  ( f v  - 1.") + A ( f i  - f p )  H A  ( f v  /,ti) --* 0 *t ~t P 4 00 8 

t he re  w i l l  be l imiting elements fo and so  tha t  

f t  4 1 0 ,  *Afv + 143 (11)- 

A l l  possibly resul t ing elements fo wi l l  const i tute  t he  obviously l i nea r  

space 8. If two such sequences f iv ,  f z V  possess the  same limiting element f10 = 

= fa*, then a l so  Afl \I and Af2 Y 

a l l  h from 8,  the  following i s  

w i l l  have the  same limiting element since, for 

valid: 
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and thus a l so  f o r  

where f represents a 

and, consequently, 

Since 8 i s  densely located, it follows tha t  hlo = hzo 

t o  define the  operator A i n  a l l  of 8, by Afo = ho; obviously, this operator 

It i s  now possible /4?5 

remains l i nea r  and symmetric. 

The proof of theorem 3 i s  conducted similarly. Incidentally, not every 

positive-semibounded form can be continued t o  a closed form; f o r  this, an 

auxi l iary condition - f o r  example the  condition tha t  this form belong t o  an 

operator - i s  required. 

For proving theorem 3, we w i l l  use theorem 2 f o r  closing off t h e  space 3 ', 
with the  measure G, by adjunction of f i r s t  i d e a l  elements, yielding a space 8 

of elements g with the  measure G. 

i s  self-convergent with G as measure, w i l l  a l so  converge &th  H as measure, 

because of 

Each sequence fV of elements from 3', which 

_r (mf) s i G i ,  

which means t h a t  it has a l imit ing element h from 8.  

it does not seem impossible t h a t  two d i f fe ren t  l imit ing elements a and g2 might 

correspond t o  two sequences f l V  and f iv ,  while the l imiting elements hl  = hz 

are ident ical .  We will demonstrate t ha t  this does not occur. 

t i on  t h a t  an operator G belongs t o  G, we can conclude tha t :  

However, a t  first glance 

Fromthe assump- 

Lemma 3 .la If, f o r  a sequence f v  from 8' , 



I h H f , - + O  for a l l  h from 8 

i s  valid, it follows that'$ 

then we a l so  have 

This i s  so since, f o r  such a sequence, t he  prerequis i te  of lemma (3.1) i s  14.76 

sa t i s f i ed ;  thus, fuGfv * 0 at  fixed w. Next, the  Schwarz inequality 

i s  used, Here, t he  lower l i m i t  of t h e  right-hand-side, as v -+ m, tends t o  zero 

with increasing p.  The lower l i m i t  of t he  left-hand s ide f o r  v m i s  fuGfu; 

consequently, a l so  fuGfu + 0 with increasing p.  

T h i s  proves direct ly:  I f  f lv  and f iv  are two sequences from 8 which define 

two W t i n g  elements g1 and g2 and two Limiting elements hl , & and if hl = h2 , 
then the  prerequis i tes  of lemma (3.2) are sa t i s f i ed  f o r  t he  difference f v  = 

= f l v  - f 2 v .  Consequently, we have (fiv - f 2 v ) G ( f l v  - f 2 v )  -, 0, from which it 

3:- I n  addition, i f  fvGfv remains bounded, we have gGfv -, 0 a lso  f o r  a l l  g from 6 
since 8' i s  Gdense i n  6. Then, lemma 3.1 means: 
verges weakly i n  bj with H as measure, then it must a l so  converge i n  6 with G 
as measure. 
i n  t he  case of weak G convergence; t he  next proof i s  nothing e l se  but an abstract  
fornulation of frequently used semicontinuity proofs; see a lso  Courant 
(Bib1.2.4) f o r  t he  method of reasoning used. 

If such a sequence f v  con- 

T h i s  property (3.1) i s  a l so  equivalent t o  the  semicontinuity of G 



follows tha t  (gl  - g2)G(gl - g2) = 0 and thus a l so  gl = g2 

If g l  = g2 i s  a real element from $, then gl = g2 = hl = h2, since t h e  

sequence f l v  converges a l so  with respect t o  Htoward gl .  Conversely, if gl = g2 

i s  an idea l  element irom 6 ,  it w i l l  be ident i f ied  by h l  = h2 . 
w i l l  change 6 in to  a subspace of 8 . 

However, this 

3. Operator of a Form 

Whereas a cer ta in  form belongs d i r ec t ly  t o  each operator, t he  opposite i s  

the case only t o  a limited extent. 

following applies: 

According t o  Fr.Riesz (Bib1.9.2), the  

Theorem 5. To each bounded form B in @ there  corresponds a bounded opera- 

t o r  B i n  8 ,  so t h a t  we have 

h I j h  = h I I B h , .  

- Proof. kt i s  be permitted t o  give a sinple proof which does not r e fe r  t o  

representation by an orthogonal system. 

Let us pose the  minimum problem, namely, t ha t  of coordinating, t o  each 

element k l  fromQ, such an element h = ko f o r  which 

J [h] =: h I t  h - 2 h 1 3  k, 

becomes as small as possible. It i s  cer ta in  t h a t  J[h] i s  bounded dovpward since 

B is  bounded. Consequently, a lower bound d and a minimal sequence hv exist. 

For these, it follows t ha t  

d,  = hrJ?h, -2hh,11k,  3 d 
and, from 

(h,+ 8 h) H ( h ,  -t. E h)  - 2 ( A ,  + ah) B k,  2 d ,  
t ha t  

(d,  - d )  $- 2 B (h  H h,. - h. H k,) + E' A N A & 0, 



meaning tha t  it is 'never  negative i n  8, so t h a t  

f ( d r - d ) h f L 3  2 - IhI l  IL, - h B k , I  

i s  valid f o r  a l l  h from 8. From this it folLows first tha t  

IL N h , -  A IIk,  -+ 0 ;  

and then, by se t t ing  H = h v  - hu and permuting v with p, 

and, consequently, 
- 

. . (11r - 14,) / I  (h, - A,) (fa, - d + )Id,, - d)' 3 0. 

However, this means tha t  hV converges toward a Limiting element ko. For this, 

with each h from 8 ,  we obtain 

h I l  k ,  - h II k, = 0, 

The coordination of ko with kl i s  denoted here as operator B, i.e., we set 

k, = B k , .  

Then, we w i l l  obtain: 

1) B i s  unique since the difference of two ko, belonging t o  the  same kl ,  

would have t o  be orthogonal on a l l  h, according t o  eq.(++). 

2) B i s  l i nea r  since the  sum of two ko satisfies the  re la t ion  ( 3 6 )  f o r  

t he  sum of the  kl .  However, i ts  existence i s  character is t ic  f o r  the  

minimm property since 

follows from it. 

3 )  B belongs t o  the  form B since eq.(++), f o r  k l  = h, i s  transformed 
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i n t o  
h N  B h  - h f I h  = 0. 

From this it follows direct ly:  4 )  B i s  symmetric and 5) B is bounded. 

A s  a new theorem, we can formulate the  following: 

Theorem 6 . For a closed form G i n  6 5; @ , semibounded by Y > 0, a bounded - 
operator B exists such tha t  

g C : B A = y N h  

is val id  f o r  g from 6, h from 8. We have 

0 I - A 21 B h 5 ( h  H h) 

and the  value domain of B l ies  i n  6. 

T h i s  operator B will l a t e r  be proved t o  be the  reciprocal of an operator /478 

belonging t o  G. 

Proof. In the  Hilbert space 6, H i s  a bounded form - 
Q J l 9  s -;- (9 Gg); .. 

which means tha t  according t o  theorem 5 a bounded operator B, explained i n  8, 

exists f o r  which 

g N h = g G B h  

i s  first valid f o r  a l l  h from @. On se t t i ng  g = Bh, with h from@, we obtain 

(BhGTBh)' = ( B h N  h)* 5 ( B h f f  B h )  ( h l K h )  5; $ ( B h G B h ) ( h l C h )  
or 

( B h  G B h )  ( h f l  h), 
i.e., 

( h f l  B h )  f (h I [  h).  (+$$E$) 
- 

This re lat ion,  which I s  primarily val id  f o r  h i n  6, demonstrates t ha t  B i s  

a l so  &bounded and thus can be continued t o  @ From eq.(t)  and t h e  assumed 
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state of closure of t he  form G it i s  concluded t h a t  Bh always l i es  i n 6  and that ,  

accordingly, the  relat ions (JHC) and (FX-) hold a l so  f o r  a l l  h from Q. 

Theorem 6 could have been proved also by d i r ec t ly  applying the  minimum re- 

quirement", without referr ing t o  theorem 5. 

From theorem 6, it follows d i r ec t ly  that :  

Theorem 7. To a c losed positive-semibounded form G i n  8 2 8 there  W i l l  exist, 

i n  a Gdense subspace 81 I= 6, an operator which "belongs" because of 

and whose value range i s  @. 

operator f o r  G. 

L__ Proof. 

kt us denote this as "maximally correspondingt' 

Let us, according t o  theorem 6, construct t he  bounded operator B; 

Then& i s  located i n  6. Now, only l e t  t he  range of values of f = Bh be 31. 

one h corresponds t o  each f fromB1, since it follows from Bh = 0, because of 

g G B h  g I f h  = 0 f o r  a11 gsfrom 8 

t h a t  a l so  h = 0. 

w i l l  be denoted by G, i.e., it i s  assumed the  Bh = f i s  equivalent t o  h = Gf. 

Thus, t he  reciprocal of B i s  uniquely defined i n ' & ;  this /479 

The space 81 i s  Gdense i n @ ,  since otherwise an element go # 0 from @ 

would exist which would be Gorthogonal o n & :  

g0Gf = 0; thu .  a l s o  g,,GBgo = g o I Z g O  = 0, i . e .  go = 0. 

Fromthis  it follows that:  

1) G i s  l inea r  since G i s  unique and B i s  l inear .  

4s Theorem 6 i s  related with the  theorem by Toeplitz (Bib1.U) on the  l imit ing 
resolvent of posit ive-definite forms of i n f i n i t e l y  many variables, a theorem 
which can be proved i n  a similar manner but more conveniently than with t h e  

theorem a lso  formed t he  s t a r t i ng  point f o r  Wintnerfs theory (BibLl3)  of semi- 
bounded matrices. 
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2) G i s  symmetric since B i s  symmetric. 

A u x i l i a r y  theorem 7.  If G' i n  8' 6 i s  an operator belonging t o  the  form 

G, i.e., an 0perato.i" f o r  which, with f' from 8' and g from@, the  following is 

then the  ''maximally carresponding'' operator G i n  81 is  a continuation of G' 

i n  $. 

L__ Proof . With the  operator B of theorem 6, l e t  us form the  element BG' f' 

from 51 f o r  t he  element f' from 3'. 

from 8: 

Then, t he  following is  valid f o r  a l l  g 

g G B G ' f ' = g I t G ' / '  = qGf' ;  t h u s  B G ' f ' = f ' ;  i . e . , f '  in 8,. 

4. Selfad.ioint (H-mermadmal) Operators 

A s  demonstrated by v.Neumann (Bib1.7.2), a spectral  analysis i s  not pos- 

s ib l e  f o r  each closed symmetric operator; f o r  this (according t o  E.Schmidt), 

the  condition of Q-perrnaximality (Bib1.7.3) would have t o  be sa t i s f ied ,  The 

same condition was  st ipulated by Stone (Bibl.lO.1) as self-adjointness of his 

spectral  theory. 

Definition. kt a symmetric operator A be explained i n  8 5 Q. kt A i n  8 

be selfadjoint  i f  t he  following condition i s  satisfied: 

If an element ho from Q i s  coordinated n i t h  another hl from Q, so tha t  t he  

following i s  valid f o r  a l l  f from 8 

h J l  A f = h,JK f ,  

then ho is located i n  and we have Aho = hl . 
Obviously, a selfadjoint operator i s  always closed. 

It i s  generally known that :  



Theorem 8. A bounded aperator i s  selfadjoint. 

To this, we juxtapose: 

Theorem 9%. The operator G i n  81 2 @, maximally belonging t o  a closed /480 

form G i n  6, i s  selfadjoint.  

operator . 
We then speak of a corresponding selfadjoint  

- Proof . According t o  v.Neumann (BibL7.4) each symmetric operator with a 

This i s  so since then an fo exists f o r  hl ,  so value range@ is  selfadjoint .  

t h a t  A f o  = hl;  consequently, 

i s  valid and, since the  Af t raverse  the  en t i r e  8, it follows tha t  f o  = ho. From 

t h i s  follows the asser t ion according t o  theorem 7. 

It can now be demonstrated tha t ,  f o r  positive-semibounded operators, the  

self-adjointness follows already from weaker conditions tha t  are easy t o  check 

f o r  our d i f f e r e n t i a l  operators. 

kt G i n  3 be a closed positive-semibounded operator; l e t  gGg i n  6 be the  

pertinent closed form according t o  theorem 3; l e t  G i n  81 be the  corresponding 

selfadjoint  operator according t o  theorems 7 and 9 .  Then, we can introduce the  

"iterated" spaces 

81, 51, G,, 5 8 1  @ m  ' " 

which consist  of a l l  elements f of B1 f o r  which, f o r  example, G f  i s  located i n  

6, 51, 01, 5n, 8,, - 0 .  

Theorem 9 a lso  furnishes the  proof f o r  a conjecture by v.Neumann (Bib1.7.5): 
A positive-semibounded operator can be continued t o  a selfadjoint  operator with 
the  same lower bound. T h i s  i s  supposedly so because of the  fac t  tha t ,  i f  this 
operator G l i es  i n  8' then t h e  corresponding form G, according t o  theorem 3, is  
continued t o  a closed form; the  corresponding selfadjoint  operator G i n B 1 ,  
according t o  the  auxi l iary theorem 7, i s  a continuation of G i n  6'; that this 
operator belongs t o  the  same lower bound follows from the  f ac t  t h a t  this i s  
val id  for the  form G. 
can be obtained also i n  a d i f fe ren t  manner. 

The only  undecided point i s  whether such a continuation 
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We then have: 

Theorem 10. It i s  known tha t  8 = 81, i.e., t h a t  G' i n  8 is  selfadjoint  if, 

f o r  any n ( n  = 1, 2, 3 ,  ...), t h e  following i s  valid: 

o r  

SiF, lies i n 8  

6, l i es  i n 8  (@n 1 

- Proof. Since &+l l ies  i n @ , ,  it i s  sufficier,, t o  prove theorem 1, under 

Since, according t o  the  auxiliary theorem 7 and (sn), the  the  a s s q t i o n  (3n). 

operators G explained i n  31, 3, 8n a re  mutual continuities and since 8 i s  closed, 

it is  suf f ic ien t  t o  demonstrate: 

The closed operator of G i n  Bn i s  G i n  81 For the  proof, it must be /481 

taken i n t o  consideration t h a t  Bn const i tutes  the  value range of Bnh where B i s  

the  reciprocal of G i n  81 according t o  theorem 6 .  

i s  dense i n  Q; i f  this were'not the  case, an element ho # 0 with 0 = hoHBnh = 

= BnhoHh would exist f o r  a l l  h, from which it would follow t h a t  g h o  = P - l h o  = 

From this it follows tha t  8n 

.. . = ho = 0. kt now f l  be an element of 81, so tha t  a sequence fV from - - 
&+I exists f o r  which fV -t Gfl. 

i.e., the  closed operator t o  G i n  Bn is explained f o r  f l  and yields  Gf1  

Then we a l so  have BfY + f l  and G(Bfv) -, G f i ,  

5. ,!%ectral Analysis 

Before formulation and proof of the  spectral  theorem of semibounded forms, 

l e t  us give a number of known concepts and correlations on the  spectral  family, 

i n  a system of notation and arrangement suitable f o r  our purposes. 

According t o  v.Neumann (Bib1.7.2), any representation of the spec t ra l  reso- 

lu t ion  must be based on "projection operators or  individual operators". 

Aproject ion operator P i s  an operator defined i n 8  which satisfies the  
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r e l a t ion  

P' = P 

Obviously, 1 - P is  such an operator. 

Iet the  elements Ph and (1 - P)h be the  eigenelements and antielements of 

P; l e t  t h e i r  value domains Ip and @@be the  eigenspace and antispace of P. 

The requirement of symmetry 

P il, ii i4, = it, J r  PI&, 

t 

f o r  h1,- hz from Q is equivalent t o  

P'h, N (1 - P) 11, = 0 

i.e., t o  t he  f a c t  t h a t  eigenelements and antielements or eigenspace and anti-  

space of P are orthogonal. 

Equivalent i s  a l so  the  ident i ty  

h Jf h = PIC I t  Plc + (1 - P) h N (1 - P) h. 

For the  form P, belonging t o  a symmetric P and consti tuting the  "single 

form", the  following i s  valid: 

0 11 Ph 5 h T t h ,  

where equality ( for  a l l  h) exists only f o r  P = 0 resp. P = 1. 

the  boundedness of P i s  demonstrated i n  this manner from the  symmetry. 

Specifically, 

The properties, re la t ing  t o  the  unitary form H, can be analogously ex- 

plained also f o r  other forms. We say t h a t  P i s  symmetric with respect t o  the  

form A i n  8 or, brief ly ,  A-symmetric i n  8 provided t h a t  not only f but a l so  Pf 

l i es  i n  3 and the  equivalent i d e n t i t i e s  f o r  f,  f l ,  fa from 8 exist: /k82 
Pf ,  1 4  f ,  = f ,  A PI,, 
P f A ( 1 - P ) f  = 0, 

f A f  P f A P f - i - . ( l - P ) f d ( l - P P ) f .  
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Then, the following holds: 
\ 

A projection operator P can be permuted with an operator A i n  3 i f ,  to- 

gether with f ,  a l so  Pf i s  located i n  8 and i f  

A P I  = P A 1  

i s  valid. 

symmetric with respect t o  H but a l so  with respect t o  the  form fAf i n  3, belong- 

ing  to. A. 

The aperator P i s  permutable with A i n  8 as soon as P i s  not only 

Below, we w i l l  always assume tha t  P i s  symmetric ( i .e*,  H-symmetric i n  Q)* 

The f a c t  that ,  between two projection operators PI , Pa, t he  following rela- 

t i o n  exists f o r  a l l  h from 8 .  

h P , h  5 h P s h  

i s  equivalent with the  f a c t  t h a t  t he  eigenspace of P1 contains t h a t  of Pa and 

the  antispace of P2 tha t  of PI. 
# 

Ekpressed i n  formulas, this reads 

, Pg P, = Pg, (1 - P,) (1 - P,) = (1 - P,) .or P, P, = p,, 

Then, a l so  P, - Pz is a projection operator. 

The spectral  family i s  a family of projection operators tha t  depend on a 

real parameter a! i n  such a manner t ha t  the  pertaining forms are monotonic. 

t he  points  a! at which these forms may become discontinuous, two projection 

operators can be at ta ined as l imit ing values from above and from below. It is  

suggested t o  imagine each value of a! as coordinated with two projection opera- 

A t  

' to rs  whose forms are continuous from top t o  bottom. For more convenient nota- 

t ion,  we w i l l  designate t h e  projection operators by the  symbols a!' and a!- (in- 

stead of a! + 0 and CY - 0). This motivates the following explanation: 



To each real number cy, l e t  the  symbols cy', cy- be coordinated; i n  general, 

le t  cy+ and a- be denoted by c y * ;  f o r  cy = 

- -a+ be introduced. 

and cy = - 03, l e t  cy' = and cy* = 

- We set ai < cy: i f  cy1 < cy2 and, i n  addition, CY- < CY' . 
The in t e rva l  

d a  = (aiIa;) 

i s  assumed t o  contain'each point cy f o r  whose two symbols cy* the  following i s  

valid: ai 5 cyo 

points,(a-, cy+) contains only the  point a. 

a;; this automatically includes in te rva ls  with and without end 

Now, let  a projection operator Pa' be coordinated with each a* i n  such /4.83 
a manner tha t ,  f o r  each h from 8 with the  corresponding forms Wab, t he  follow- 

ing holds : 

1) If 
ai < a;, then h IDrn; h h 2's; he 

Y -> 00 

2) If, as v -t a, 

Then, Pa* i s  a spec t ra l  family. 
. 

The spec t ra l  family i s  complete i f  

p-.& = 0, P,- = 1 

i s  valid. The difference operator 

P J ,  = P(a; ,  a;) = Pa; - Pa; 

of the  in t e rva l  La = (a;, cy;) again i s  a projection operator. 

t h e  skip operator 

It represents 

P (a-I a') =i= 0 

only f o r  an  at  most denumerable set of values cy, known as point eigenvalues. 
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Let the spectral  theorem f o r  bounded forms - as is  sui table  f o r  our 

purpose - be postulated as follows: 

Theorem 11. Let B i n  8 be a bounded form with the  bounds 8,  s; le t  B i n  @ - 
be the  corresponding operator. 

family Qs*, so tha t  t he  following holds: 

Then, there w i l l  be exactly one complete spectral  

1) Q* i s  symmetric with respect t o  the form B and with respect t o  H. 

2) The two "eigenvalue inequalit ies" 
- 

B z ( h I l Q ~ p h )  S; (hnQrpIb) 5 0, (hI [Q,ph)  

exist, with AS = ( S ; ,  P i )  f o r  a l l  h from 0. 

Auxiliary theorem ll.1. W e  have Qr = 0, €@+ = 1. 

Auxiliary theorem l l .2 .  

The proof of theorem 11 and of the  auxiliary theorems i s  readily obtained 

- 
The operator B i n  8 can be permuted with Qe.. 

from the conventional formulations of t he  spectral  theorem [see specif ical ly  

Fr.R;iesz (Bibl.9.3) 1. 

The spectral  theorem f o r  closed positive-semibounded forms reads as follows: 

Theorem 12. Let G i n  6 be a closed form, semibounded downward by y > 0, - 
and l e t  G i n  81 5 6' be the  corresponding selfadjoint operator. Then, exactly 

one complete spectral  family Ry* w i l l  exis t ,  so tha t  we have: L & k  
1) Rye i s  symmetric with respect t o  the  form G i n  6 and with respect t o  

H in 80 

2) The two 'Ieigenvahe inequalit ies" 

Auxiliary theorem 12.1. 

Aux i l i a ry  theorem 12.2. 

We have R1/- = 0, R,- = 1. 

The operator G i n  81 can be permuted with Ry*.  
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Auxiliam theorem 12.3. The eigenelements of the  d i f f e ren t i a l  operators 

RAY of f in i te  in te rva ls  Ay are located i n 8 1 .  

We w i l l  say thqt  t he  spec t ra l  family R y  furnishes the  spec t ra l  resolution 

of G i n  6 and of G i n B 1 .  

- Proof. Theorem 3.2 i,s a simple log ica l  consequence of theorem XI.. T h i s  is  

so since, i n  the Hilbert space 6, the  form H ~5.11 become a form bounded with 

1 -  respect t o  6, with the  bounds 0 and - = B; here theorem 11 can be applied, Y 
furnishing a spectral  family Qp-. 

manner, 

- 
1 
Y Then, we set B = - f o r  B > 0. In this 

I 

ny~ = 1 - Qp-, II,- = 1 - Qp+ 

W i l l  explain a l so  a spec t ra l  family. This family i s  complete since, first, t h e  

aux$-liary theorem 11.1 indicates  t ha t  we have QTj+ = 1, i.e., Ry- = 0. Secondly, 

t o  demonstrate R,- = 1 - &o+ = 1, a verif icat ion of Qo+ = 0 i s  required. If we 

would not have &o+ = 0, an eigenelement h = Qo + h of Qo+ would ex i s t  and, 

according t o  the  second eigenvalue inequality with 

sary t h a t  (hHh) 5 0 from which, however, h = 0 would be obtained. 

= O+, it would be neces- 

f ' f F  
Since R(yf, y2) = &(Pa, P I ) ,  the  eigenvalue inequal i t ies  of theorem ll are 

transformed d i r ec t ly  i n t o  those of theorem 12. Similarly, t he  Gsymmetry of Rye 

i n  6 follows d i r ec t ly  from this; however, the  symmetry with respect t o  H follows 

only i n  a; anyhow, the Rye  are defined by the  above def in i t ion  only in 6. 

ever, from the H-symmetry of Rye i n  6 there  follows the  H-boundedness i n  6; 

How- 

consequently, the  Rye can be continued over the  en t i r e  8 and, as i s  quite obvi- 

1 ous, without losing t h e i r  character as a spec t ra l  family. 

T h i s  demonstrates the  existence of t h e  spectral  family of 6, The Unique- 

ness is obtained from the  f a c t  tha t ,  inversely, t h e  Unique spec t ra l  family of H 

i n  the  space 8 can be obtained from t h a t  of G. 

26 



To prove the  auxiliary theorem 12.2, we have t o  demonstrate that, f o r  f /&& 
from 31 , a l so  Hy* f i s  located i n  81 . However, f o r  a l l  f ,  f1 from 31, we have 

Since G i n  81 i s  selfad joint ,  it follows tha t  Ry= f l i es  i n  31 and t h a t  

G R y f  = R y * G f e  

For proving the  auxiliary theorem 12.3, it should be noted tha t ,  according 

t o  the  auxiliary theorem 12.2, t h e  operator GRAY (Ay, f i n i t e )  i s  applicable 

i n  81 . However, from the  eigenvalue inequal i t ies  it follows tha t  GRAY i s  sym- 

metric with respect t o  H and i s  bounded, since this i s  the case f o r  t he  per t i -  

nent form 

Consequently, the  operator GRny can be continued over a l l  of 8 ;  i n  this case, 

t he  operator w i l l  be denoted by (GRAy) i n  81 . Now, using f from 81, we have 

(G R ,  y )  h II i = R J ~  Ir € L  0 f 

which i s  val id  f o r  a l l h  from 3 and thus a l so  f o r  a l l h  from Q. Since G i s  

selfadjoint ,  it follows tha t  RAvh is  located in81 and t h a t  GRAyh = (GRhy)h 

applies . 
6. Complete Continuity and Discrete Spectrum 

Hilbert and Weyl developed simple c r i t e r i a  f o r  t he  f a c t  t ha t  t he  spectrum 

of a given operator i n  a given in t e rva l  consists only of discrete  point eigen- 

values of f in i te  mult ipl ic i ty .  For these c r i t e r i a ,  we w i l l  give a simple proof 

arrangement which simultaneously permits i t s  extrapolation t o  unbounded opera- 

to rs .  Let  us first state the  following: 

A spec t ra l  family P, i n  a closed in t e rva l  l!a = (al-, ma+), has a d iscre te  
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s p e c t r u d  if t h e  eigenspace of PAa has a f ini te  dimension. 

It follows readily from this t h a t  Pa*, within this interval ,  i s  constant 

i n  CY’ t o  within finitely many discontinuity points  (point eigenvalues) whose 

eigenspaces have f i n i t e  dimension#-5’ . 
I n  addition: The spectrum i s  denoted as d iscre te  i n  a given interval i f  it 

i s  d iscre te  i n  each closed subinterval. 

nated as d iscre te  i f  it i s  d iscre te  i n  each interval .  

Let us now introduce the  concept of complete continuity with respect t o  /486 

a posit ive-definite form, as a generalization of t he  Hilbert concept of complete 

continuity. I n  a manner d i f fe r ing  from tha t  used by Hilbert, complete continui- 

t y  can, be characterized a l so  by a property”” which i s  convenient i n  verifying 

the  following theorems and i s  convenient t o  demonstrate i n  the  application t o  

d i f f e ren t i a l  operators. 

I n  general, let  the  spectrum be desig- 

$’ \‘+C 

Definition. Let gGg be a posit ive-definite form i n  a Hilbert space 6 9 Q . 
Then, l e t  the  form gVg i n  6 be completely continuous re la t ive  t o  G (denoted 

br ie f ly  as G-completely continuous) i f  a f i n i t e  number of elements hl ,  h2, ..., 
h, from 8 exist f o r  each e ,  so tha t  we have 

T h i s  d i rec t ly  

- Lemma. Let a 

develop infinitely 

y ie lds  the  following: 

subspace 8 of 6 have i n f i n i t e  dimensionality (i.e.,  have it 

many l inear ly  independent elements). Then, 3 contains a l so  

36 Known a l so  as “discrete  point spectrum”. 

~6 The eigenvalues of a non-discrete point spectrum may l i e  densely or may have 
infinite multiplicity.  

3W4t This i s  related with the  characterization of complete continuity, preferred 
by Hellinger and Toeplitz i n  t h e i r  a r t i c l e  i n  this Encyclopedia. 
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an element z # 0, f o r  which 

i s  valid, i.e., a l so  an element z with z& = 1 and a r b i t r a r i l y  small ZVZ. 

Since the  space 3 has an infinite dimensionality, it def in i te ly  contains 

an element which i s  orthogonal on a r b i t r a r i l y  m a n y  hl, b, ..., h,. 

The Hilbert c r i t e r ion  (Bib1.5.2) then reads: 

Theorem 16. A form hvh i n @ ,  which i s  H-completely continuous, has a dis- 

crete  spectrum i n  each in t e rva l  not containing zero3'. 

' .  Weylfs c r i t e r ion  (Bib1.12.3) refers t o  the modification of the spectrum of 

a bounded form i f  a completely continuous form i s  added. 

here with extrapolating this c r i t e r ion  t o  positive-semibounded forms'"' 

We w i l l  be sa t i s f i ed  

Theorem 17. Let the form G i n  (3 5 6 be semibounded with the lower bound 

y > 0 and l e t  it be closed. 

Hilbert space 6 with the measure G. 

Let the  form gVg be completely continuous i n  the - 

Then, G + V has a d iscre te  spectrum below y - ( i . e - ,  i n  each closed in t e rva l  

below y) . - 
A u x i l i a r y  theorem 18. If the  unitary form H is completely continuous with 

respect t o  G, then G i t s e l f  has a d iscre te  spectrum i n  any case. 

The proofs f o r  t he  mentioned theorems become ent i re ly  simple i f ,  i n  

accordance with the method applied by F.Rellich (Bibl.8) i n  investigating the  

spectrum of d i f f e ren t i a l  equations, the above lemma i s  used as basis. 

L4.87 

T h i s  lemma w i l l  be applied f i r s t  i n  proving the  first c r i t e r ion  (theorem 

= (a;, ai) not containing 0 would exist i n  16). Assuming t h a t  an in t e rva l  
! 

* The inverse a l so  applies. 

>we An extrapolation of the  general Weyl c r i t e r ion  t o  arbitrary unbounded opera- 
t o r s  w i l l  be performed elsewhere. 



which the spectrum of V i s  not d i scre te  so tha t  t he  eigenspace 8 of the  spectral 

family of V, belonging to(  L!a, would be of infinite dimensionality, i.e., would 

have many l inear ly  independent eigenelements z, then the  lemma would indicate  

t h a t  a l so  a z ex i s t s  i n  3 f o r  which the ZHZ would equal 1 and f o r  which zVz 

would be a r b i t r a r i l y  small. 

d i c t s  the eigenvalue inequal i t ies  which require t h a t  

\ 

However, because of cr1 > 0 o r  a2 < 0, this contra- 

al (z  fI z) z l’z an (z  I1 z )  

For proving the  second c r i t e r ion  (theorem 17), we assume tha t ,  t o  an 

inLena1  with the  upper bound y( 1 - 8 )  < y,  there  would belong an eigenspace 3 
of G + V with in f in i t e ly  many l inear ly  independent elements Z. For these, the  

- - 

eigenvalue inequality 

exists; however, this inequality i s  i n  contradiction with zGz 2 y(zHz) - i f ,  

according t o  theorem 3 ,  we select  an element z from the subspace 3 of the 

Hilbert space (3, f o r  which eGz = l b u t  f o r  which ZVZ i s  arbitrarily small. 

The auxiliary theorem Is follows d i rec t ly  from the f ac t  tha t ,  f o r  t he  

eigenelements z of (Cui, CY;), the  second eigenvalue inequality 

exists; f o r  an eigenelement z with zGz = 1 and a r b i t r a r i l y  small zHe, this leads 

t o  a contradiction. 

Received July &, 1933. 
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SPECTRAL THEORY OF SE%IBOUNDED OPERATORS AND THEIR USE I N  
SPECTRAL ANALYSIS OF DIFFERENTIAL OPERATORS. PART II? 

K.Friedrichs 

1. Spectral  Theow of Different ia l  %erators of t he  Second Order 

I n  this second par t  of our paper, the  theory of semibounded operators w i l l  

be applied t o  l i nea r  d i f f e ren t i a l  operators of the  second order, so as t o  obtain 

t h e i r  spec t ra l  analysis. 

whose treatment w i l l  adequately demonstrate the  general i ty  of the method. 

Here, we r e s t r i c t  ourselves t o  a f e w  typ ica l  cases 

kt the  operator i n  question be the  "potent ia l  operator" 

The elements t o  which this operator i s  t o  be applied a re  functions f of the  

variables xl, ..., x,. The t reated cases d i f f e r  primarily by a different  selec- 

t i o n  of t he  domain of the  variables XI, ..., x, and by different  boundary condi- 

t ions.  

c lass i f ied  with Schrgdinger' s representation, we simultaneously t reated the  

case tha t  t he  'lawdliary potent ia l"  v has a s ingular i ty  i n  one point.  

t ion,  v ( i f  necessary, by addition of a constant) has been selected so large 

t h a t  G becomes positive-semibounded. 

To demonstrate t h a t  a l so  quantum-theoretical-energy operators can be 

I n  addi- 

Thus, we di f fe ren t ia te  the. following: 

(1) Case of the  infinite domain with regular V. 

Here, the  domain r i s  the en t i r e  (xlt ..., x,) space. No special  boundary 

condition need be established. 

Part  'I of this paper was published i n  Math. h a l e n ,  Vol.109, pp.465-487. 



(2) Case of t he  inf ini te  domain with singular v; n > 1*, 

Here, v may become infinite, i n  a st i l l  t o  be indicated manner, on approach 

t o  the  point x1 = .:. = x, = 0. 

(3) Case of t he  f inite spherical  domain with regular v, at the  boundary /686 

condition 

f = 0. 

(4) Case of t he  f in i te  spherical domain with regular v, at the  boundary 

condition 

Here, w e  have been sa t i s f i ed  i n  using, as f in i te  domain, e i the r  a sphere, 

a c i rc le ,  o r  a l i n e  segment since f o r  overcoming the  d i f f i c u l t i e s  inherent i n  

the nature of t he  domain our theory of fe rs  no new viewpoints. The same is  t rue  

f o r  the  select ion of t h e  boundary conditions which, incidentally,  Will be some- 

what weakened. 

n = 1, 2, 3 .  

F u l l  treatment was given only t o  cases of the  dimensionalities 

For the  dimension n = 1, the  en t i r e  theory can be represented i n  a much 

simpler manner; the  cases of f ini te  domain are accessible readily t o  conventional 

methods ( f o r  example, calculus of variations),  

t o  c l a r i f y  t h e i r  coordination with the  general theory. 

We included these cases so as 

2. Notations 

I;et a point of the  variable space be denoted a l so  by x = (XI, . . ,, x,) . 
We then pose 

= = qz:+ ..:+2:. 

-)t The general theory of semibounded d i f f e ren t i a l  operators with s ingular i t ies  a t  
one variable, n = 1, w i l l  be presented elsewhere. 
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The basic domain i s  t o  be as follows: i n  the  case 

1) t he  t o t a l  x-space, 

(2) 

(3) (4)  

t he  totalx-space without x = 0, 

t h e  "sphere" r < R. 

We are using the  following abbreviations ( a t  p S R): 

n f o r  the  spherical  area r = p, 

K p  f o r  the  sphere r < p, 

P 

Kbp f o r  t he  spherical  s h e l l  p 5 r c P. 

In addition ( a t  Q > 0) To i s  t o  mean: i n  the  case 

( 1) To = w, 
( 2) To = $1/., 

( 3 )  (4) ' 0  = K R - ~ ,  

so tha t ,  as Q -, 0, the  domain r, exhausts the en t i r e  domain r. 
A s  "square" about x = 5 with the  s ide 26, we denote the  domain 1x1 - 511 < 

< 6, * * o s  Ixn -. 5 n 1  < 6 or,  abbreviated, [x - 51 < 6. /687 
The integrat ion over the variable space will be denoted by 

The improper in t eg ra l  over the  t o t a l  space 1 ... dx i s  t o  mean the  l imit ing 

value of J ... dx as o + 0. 

3. Function Spaces and Operator . 

r 

ro 

First, we will define the  Hilbert space @, t he  space 8 of the  form G, and 

the  space 8 of the  operator Go 

spaces" w i l l  be given, formed by functions with simple d i f f e ren t i ab i l i t y  proper- 

t ies;  these w i l l  then be closed t o  spaces of i d e a l  elements. 

For this, dense subspaces known as "function 

In order t o  form the  Hilbert space @, we first wi l l  derive the  subspaces 
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@' and Qtl. 

continuous o r  piecewise continuouk' i n  r, of the  variables 

As  elements h, the  subspaces resp. 8' possess a l l  functions h(x), 

x = (51, ' "# Xn), 
f o r  which 

Ib m = 5 ha (2) d x 
I' 

exists. 

not closed. 

continued t o  a closed Hilbert space 8, specif ical ly  by adjunction of i d e a l  ele- 

ments h f o r  which a l so  t h e  measure hHh i s  explained, so tha t  $! i s  dense i n  8 .  

It i s  t rue  t h a t  these ideal elements can be realized by quadratically fi-inte- 

We will use H as the  measure. It i s  known tha t  @' i s  separableyd' but 

According t o  theorem 2 (Part  I), the  subspace $ can be uniquely 

gratable functions but there i s  no advantage i n  making use of this f a c t  f o r  /688 

t h e  case of n > 1. 

We w i l l  use the  following notation a l so  f o r  t he  ideal elements: 

If the  elements h are functions h(x), t he  variable x will be visualized i n  each 

case 

A s  subspaces of @'I, l e t  t h e  spaces (3" and 8' be explained. kt 8" resp .6' 

consist  of a l l  such functions g(x) of @It t h a t  have continuous o r  piecewise 

A function h(x) Will be designated as piecewise continuous i f  it i s  not de- 
fined on a finite number of planes xv = s v  = const, spherical  surfaces r = p = 
= const, or, 
The 

the  domains formed from 
Ix - 51 5 e ,  

+E The l inea r  combinations of t he  elements e 

number of points  x = 5 and i f  it i s  otherwise continuous. 
are t o  mean E k i t i n g  values f o r  e + 0 of the  in tegra ls  over 

,by exclusion of t he  I X V  - S v l  * 8,  Ir - PI 5 e, 

of @' 

If /h:dx, /hzdx exists, then we a l so  have l h l h d x .  
r r r 

5& 

in [z-.$] < 8, er,a = 0 e x t t t n d  
1 

e& d = - 
(2 6)" 

are known t o  lie. €I-dense i n @ '  . 



continuous first derivatives i n  and f o r  which the  forms 

g T'g = Ju(4q9(z )dz  
I' 

and thus - with G = Q + V - 

exist 

I n  the  case (3) a t  a f ini te  domain = KR, t h e  functions g ( x )  of 0' must 

already be subjected t o  t h e  boundary condition of vanishing on OR. T h i s  i s  re- 

placed by the  less s t r i c t  condition: I 

In  the  case (4 )  as well as i n  t h e  cases (l), (2), no boundary condition 

f o r  @'is t o  be stipulated.  

Then, t he  following conditions a r e '  formulated for the  awdliary poten t ia l  

v(x) : 

Case (1). (31, (4).  

kt v(x) be continuous i n  I?' and be bounded downward by 

Case (2): n > 1. 

Using any P > 0, we assume tha t  

1) For n 2 3 ,  

n - 2  I 
2 r  p (r) = - - O < r d P *  

31. In t h e  case n = 1, a p i e c k s e  continuity i s  suf f ic ien t ;  i n  the  untreated 
case n > 3,  s t r i c t e r  requirements w i l l  have t o  be made on V. 
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2) For n = 2 

~ ( r )  I %-- i l l  
A T  in - 

T . 
f o r  aw A >  P. 

Then, l e t  v(x) be continuous i n  r and l e t  one v, one P, and a number 0 

'from 0 0 < 1 exist .so tha t ,  at y(r)  = 0 f o r  r > P, we have 

* (z) 2 v - G pl (r) 

O f  the  constant 2 we a l so  require tha t  it be suf f ic ien t ly  large, namely, 

v > 1 + 0 k 1  - 

where the  constant k > 0 i s  t o  be determined i n  accordance with Appendix (2.2)3'. 

We w i l l  denote a l so  the  case (2) a t  0 = 0 by (2 ) ,  , and a t  0 # 0 by (2)@. 

With the  form G = D + V, explained i n @ '  , t he  following estimate exists: 

so  tha t  t h e  form G is  positive-semibounded. 

(3), (4) with 0 = 0 follows d i r ec t ly  from 1 2  1. 

This fac t ,  i n  t he  cases (l), (2)0 

In the  case ( 2 ) ~ ,  we refer t o  

the  f a c t  tha t ,  according t o  Appendix (2.2) and (2.3), the  estimate 

. . .  . 

0 

(4) 

C 
$5 To coordinate t h e  Schrzdinger problem, it i s  necessary t o  set v(x) = - - + 
+ const. 

r 

3w Together with eq.(3)@, it follows from eq.(4) t h a t  

which W i l l  be noted f o r  later use. 



The space 0' can then be closed, with G as measure, t o  a Hilbert space'@ 

of elements g from $2. According t o  theorem 3 (Part  I ) ,  this follows from the 

fact ( t o  be proved below) t h a t  t he  form G i n  a Gdense subspace 8 of a", leads 

t o  an operator G. 

again be symbolically represented by t he  corresponding integrals .  

For t he  i d e a l  elements from @, t he  forms D, V, and G w i l l  

I n  t h a t  case, 

the  inequality (3)@ w i l l  apply a l so  i n  the space 0. 

The spaces 5" and 3' consist* of a l l  functions f ( x )  from@" tha t  possess /690 

continuous o r  piecewise continuous second derivatives i n  r and f o r  which the  

function -Af(x) + v(x)f(x) ( for  abbreviation, we are using A = -) a" i s  
v = i  ax% 

located i n  et resp. i n  $j . I n  3' , t he  operator G i s  explained by 

G - A + u .  

d I n  the  case (4) of a f i n i t e  domain = K p ,  t he  boundary condition - a r  
f ( x )  = 0 on 66, must be st ipulated.  We establ ish t h i s  condition i n  the  weakened 

form: With each 

8 and 3t' i n  the  

I n  fact ,  3' 

function g(x) of @",' l e t  the  following be valid f o r  f ( x )  from 

case (4 ) :  

i s  Gdense located i n  6" and the  operator G i n  3' belongs?"' t o  

t h e  form G since, f o r  each f from 3' and f o r  each g from 8' %reenfs transforma- 

t ion" 

f 

i s  valid. Its proof will be given 

Gg = G f I l g ;  

i n  Appendix 3. 

36 I n  the  case (1) it i s  suff ic ient  t o  s t ipulate ,  instead of t he  correlation 
with@", the  existence of continuous first derivatives, from which the  existence 
of t he  in t eg ra l  G follows automatically; see Appendix 3 ,  auxiliary theorem. 

Then, @' is  Gdense i n @ '  

0 

By twice continuously different iable  f unctiops from 8' ( see Sect. 5 2), each 
function from 8'' can be Gapproximated. 
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The operator G i n  8 ' ,  according t o  theorem 4 (Part  I), can be continued 

uniquely t o  a closed operator G i n  a space 8 of elements f .  

located i n  6 [note on theorems 3 and 4. (Part  I)], and eq.(6) remains val id  i n  8 

and 6. 

The space 8 i s  

4.0 2bectral  Analysis; Theorems 

Naturally, it cannot be expected t h a t  the  or iginal ly  explained operator G 

i n  3' possesses a spec t ra l  resolution since it i s  not closed. However, this 

can be s t ipulated f o r  t he  uniquely coordinated closed operator G i n  3. 

this, it is  established tha t  t h e  eigenelements of f ini te  intervals" already l i e  

Beyond 

i n  the  space 8" and thus are twice continuously different iable  and permit suc- 

cessive application of G as of ten as desired. 

The spec t ra l  resolvabi l i ty  of the  operator G i n  3 i s  due t o  i t s  self- /691 

adjointness. For 

this, we start from the  premise tha t  the  operator G i n s t  , which had been closed 

To prove tha t  G i s  selfadjoint  i n  3 i s  one of our main tasks. 

t o  G i n  3, can be continued i n  a different  manner t o  a selfadjoint  operator. 

Namely: 

t o  G i n  GJ according t o  theorem 3 (I), after which the  selfadjoint  operator G, 

belonging t o  G i n  6 and explained i n 3 1  2 - G  i s  formed according t o  theorem 7 

(I)"'. 

[auxiliary t o  theorem 7 (I) 1. 

The form G i n @  , belonging t o  G i n 8 '  , i s  formed first and then closed 

Then, G i n  31 is  a continuation of G i n  8' and thus a l so  of G i n  8 

Consequently, it i s  suf f ic ien t  t o  demonstrate 3 =81 e For this, we r e fe r  

t o  the  c r i t e r i a  established earlier f o r  theorem 10 (I). Here, (Gn):fjn lies 

3' This means the  eigenelements of the  difference projection operators RnY of 
the  spec t ra l  family R y =  of G, belonging t o  f i n i t e  in te rva ls  Ay. 

M Equation (6) applies a l so  f o r  g i n  8, f i n  81 . 



i n  3 or else l ies  i n  3. The elements f from&; f o r  which Gf l i es  i n  

The first of our theorems will be different ly  formulated, depending on 

the  number of variables involved. 

A. One variable: n = 1. 

Theorem 1A: 

1. 8 l ies  i n  Qql, 

2. 81 l i es  i n  @'I, 

3.S1 l i es  i n  

B. Two and three variables: n = 2, 3. 

Theorem 18: 

1. 31 l i e s  i n  @ I 1 ,  

2. a1 lies i n  @Ir, 

3. 32 l i es  i n  311. 

From theorem 1, it then follows tha t :  

Theorem 2: 

3 = &L, 

i.e., t he  operator G i n  8 i s  selfadjoint .  

In  fac t ,  t he  c r i t e r ion  (gl) i s  sa t i s f i ed  i n  the  case A w h i l e  the  c r i t e r ion  

(z2) is  sa t i s f i ed  i n  the  case B. 

Furthermore, it follows d i r ec t ly  from theorems 1 and 2 tha t :  

Theorem 2. If the  operator G i s  a r b i t r a r i l y  often applicable t o  f from 

8 =81, then f ,  Gf, G2f ,  ..., G n f ,  ... wi l l  l i e  i n  8". 
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Theorem 4. A spectral  family Ry, i n  t he  sense of theorem 12 (I), exists 

f o r  the  form G i n  Q and f o r  t he  operator G i n  8. 

2) The eigenelements of the difference operators RAY of f in i te  in te rva ls  /692 

Ay = (y l ,  y2) are functions fAy(x)  from8". 

value inequal i t ies  apply: 

With these, the  following eigen- 

- 

- Proof. Theorem 4.1, according t o  theorem 2, follows from theorem 12 (I). 

Then, according t o  the  auxi l iary theorem 12.3 (I), theorem 4.2 follows from 

theorem 3 .  

5. Preparations for the  Proof of Theorem 1 

5.1 Mean Values 

A pr incipal  a id  i s  constituted by the  mean-square values of elements h 

from 8 over squares [x - 51 < 6 from r. 
egP from@' , which are  defined by 

1 

For this, we introduce the  elements 

et,d(z) = - in fz - 61 < 6, 
e;,d(z) = 0 o u t  o f  ( 0 -  €1 < 6, 

(2 3)" 

The mean-square values of h from@ are  then explained by 

e t , d l l h  = j e ; , , j h d x ,  
I' 

f o r  which we a lso  use the  notation 

The l imit ing values of t he  mean-square values, on contraction of the  square 

t o  the  center, w i l l  be denoted - so far as they exist - by hg: 



b 

. 
TlI 5.2 &aces 8' . . . . I  1 

Frequently, functions of t he  spaces !$ , ..., 8'' w i l l  occur which vanish 

outside of any domain roo 
l y  lying densely i n & ,  are denoted respectively by 

The subspaces, formed by these functions and obvious- 

. 
For the  functions h(x) from Q', the  operator V i s  explained by 

V h  = v ( z )h ( z )  ' 

For elements f from 8 ,  the  operator 

/693 i s  explained, so t ha t  f o r  f from 

. 
applies d i rec t ly  i f  g belongs t o  (3' T h i s  transformation can be extrapolated 

ax 
t o  a l l  g from 8 since the  form (-g) a 2  dx i s  boundedly explained i n @ .  

r 
5.3 The Operator So 

Another a id  i s  an operation which, from each element, produces another 

element which vanishes a t  a suf f ic ien t  distance i n  the  neighborhood of the  

singular point. 

t i o n  sa(x) with the  following properties: 

For this, we se lec t  an arbitrarily often different iable  func- 



Because of i t s  boundedness, it must be continued over the  en t i r e  8 .  Obviously, 

S, W i l l  produce other elements from @ and 8". We can demonstrate t h a t  S, is 

bounded i n  8, with G as measure. 

t Q  demonstrate t he  boundedness i n @ '  , i o e m ,  that ,  i n  t h i s .  condition- note* t h a t  

S, is  not symmetric with respect t o  G - the  following i s  val id  f o r  two elements 

g and gl of 8' : 

For th& purpose, it is obviously suff ic ient  

IS, 9 G 91 la i c (9 G 9) (91 G 91) 

Iv(x) 1 c2 i n  I&, then we have as0 
If 1-1 c1, 

1SU9~91I = ; j s . ( 4 ~ & ( 4  ~ g I ( 4 C h  a 

+I 2' (&. (4 G9, (4) 9 (4 d z  ; 5 \ 9 B 9 \ 91 g , + c , d g m  vg, Dg,, 

r 
-- a I- /- 

-- 
IS, 9 J7Ql I s c, ds I f 9  ds1 J [ g , -  

Taking the  inequality (3)@ i n to  consideration and using suitable constants 

6, we will actually obtain I ,%gGgl\ C JxJs. 

6. Three kmmas 

Lemma 1. If, f o r  t he  element h 

tinuously i n  5 i n  such a 

follows tha t  : 

1). t he  in t eg ra l  

* See previous footnotes 

42 

manner t h a t  

on pp 08 and 

from 0, the  l imit ing value hS exists con- 

f o r  s = 5s -, so, then it 

10 of Part I. 



I,: a x) 
r 

exists 

h i s  a function h(x) from Qgf with h(x) = hx. 2 )  

- Proof. kt us first note the  r e l a t ion  val id  f o r  continuous h,: 

h E d X  I - J hdx) 
12-3 < J 

(2 an Iz-il < J 
( 9 )  

where the  integrat ion of t he  left-hand s ide i s  t o  be understood i n  the conven- 

t i o n a l  sense. 

square f o r  which 

I n  fac t ,  i n  a l l  other cases we assume tha t  [x - 511 < 61 i s  a 

$1 j' h = d z -  ' J  = a > O  
L* - til < J, 12 - i'tl < 31 

i s  valid. Then, we resolve [x - 1 < 61 i n t o  2" subdomains of a side 26, = 61 . 
For one of these 

b - € , ] < d s  =$, 

t h e  following must then be valid: 

Closing furthermore i n  this manner, a nesting sequence of domains 

[z - E,] < 6, = "1 zr ' 

w i l l  be created, which converge toward a l imit ing point So. 

of the  continuity of hS, we have f o r  v -., 00, 

However, because 

from which the contradiction 1 h5, - hG I 2 (Y originates.  

It W i l l  be noted t h a t  t he  function sa(x)hx i s  an element 

4.3 



h j  = u , ( x ) ~ ,  

from @'I. 

equivalent t o  

The above equation (9) i s  then, f o r  a l l  squares [x - 5 1  < 6 from rT, 

J(I& h)e;,J d x  = 0. 
r 

If ,  now, k = k(x) i s  an element from @It, then the  function S k  = so(x)k(x)  

can be approximated, by l i nea r  combinations, t o  t h e  function e5,6 f o r  which 

[x - 5 1  < 6 i s  located i n  rT with 7 = - so tha t  we Will have 

/695 

CT 

3 ,  
J ( 1 r :  - l l ) S , k d x  = 0. 
I' 

Considering next Soh?; = hg, it follows tha t  

J ( h S - S S , h ) k d x  = 0. 
I' 

Consequently, we have 

S,h  = ht ='s,(z) h,. 

Then, f o r  each element h from Q, t he  following inequality applies: 

s ince it i s  val id  

From this follows 

in t eg ra l  h%dx. 

. from @" f o r  which 
r 

j(S,h)%ls g Jllvs, 
I' 

f o r  the  h from Q' . Hence, we specif ical ly  have 

jh:cEz= j x x ( ~ ) d Z  5 jh:s(Z)dZ = J ( s U h ) ~ d z ~ J h v 2 .  
r a  I'U I' r r 

the  f i r s t  pa r t  of t he  statement, namely, t he  existence of t he  

This def in i te ly  establishes tha t  h, i s  a function h*(x) 

Soh" = sa(x)h, = Soh so tha t  

j S , k ( h * - h ) d B  = 0 
1' 

i s  valid;  however, since the  Sok are dense i n @ ,  it follows tha t  

h* = h. 



T h i s  const i tutes  t h e  second pa r t  of t he  statement. 

I n  addition, we have: 

hma 2. Let an element g from 6 be a function g ( x )  from @I1 and l e t  g ( x )  

be continuously different iable  . 
Then, 

1) the  r e l a k o n s  

exist; 

2) t he  element g i s  located i n  @". 

For the  proof, we w i l l  use the form which i s  assumed t o  be explained 

i n  S' by 

with $(r) = cp(r)rn-' and 0 = 0, except i n  the  case ( Z ) @ .  

We have 

From the properties of v(x) - and i n  the  case ( 2 ) ~  according t o  Appendix 

(24, (2.3) - it i s  obvious tha t  gGag does not decrease as (J + 0 and actual ly  

tends t o  gGg. Specifically,  we have 

9G"V s qG!T 

Thus, the  form & is  bounded i n  (8' and therefore can be continued over t he  

en t i r e  8, i n  which case this inequality remains applicable. 

Since the  operator SO i n @ '  , with G as measure, i s  bounded, t he  iden t i ty  

4-5 



val id  i n  (3' i s  a l so  valid i n  0. 

If t h e  continuously different iable  function g(x) l i es  i n  6 and @'I, then it 

i s  def ix i te  t h a t  Sag = so(x)g(x) l i e s  i n  (3'' and tha t ,  f o r  CT 

(2)o according t o  Appendix (2.0) - we obtain 

oo - i n  the case 

Consecplently, t he  left-hand s ide remains bounded with increasing G. From 

this, we first obtain the  existence of the  in t eg ra l  

and - i n  the  case ( 2 ) ~  according t o  lemma (2.3) - t h e  existence of 

T h i s  proves the  first statement of lemma 2. The second portion, namely, 

t ha t  g l i e s  i n  @I, follows d i rec t ly  f o r  the  cases (l), (2), (4) from the  ex- 

planation of @ I 1 -  

I n  the  case (3) ,  we still have t o  prove tha t  g(x) a l so  satisfies the 

boundary condition 
g g ( S ) d x  4 0  

a-to "R--o 

For this, we wi l l  demonstrate t h a t  this boundary col.dition is equivalent t o  

the  following: 

A constant C > 0 exists so tha t ,  f o r  p > Po > 0, t h e  following i s  vakd:  



In fac t ,  from eq.(l!+), t h e  va l id i ty  of eq.(l)  follows direct ly .  

eq.(l) i s  sa t i s f ied ,  the  inequality 

Conversely, i f  

i s  used, as it i s  obtained from eq.(l.l) i n  t he  Appendix, With C = p i w n  . If 
i 

r = R - - o + R  

we W i l l  obtain eq.(B).  

The inequality (23) i s  d i rec t ly  found as equivalent t o  t he  following condi- 

tion: 

A constant C ex i s t s  such tha t ,  f o r  a l l  P I ,  PZ from 

eo s; el < ea < 
t h e  f o l l M n g  i s  valid: 

This i s  so since the  inequality (B) follows from this f o r  PZ --t p1 = p .  

Conversely, t h e  sane re la t ion  proves the  existence of eq.(M+) taking in to  con- 

s iderat ion t h a t  an intermediary value p exists, so tha t  we have 

J' g a d x  = r r n - l d r  Jg'dw. 
.%ea Pi wQ 

Both s ides  of eq.(W$) represent forms bounded i n  (3' , which must be con- 

tinued on @. 

from Q" and @ f o r  which we j u s t  have proved the existence of the  in t eg ra l  

Consequently, eq.(W+) i s  applicable a l so  t o  the  function g(x) 

C ( -$ -gydx .  For g(x), these continued forms are represented a l so  by the  

Consequently, t he  condition (1) i s  sa t i s f i ed  f o r  these functions 
r 
integrals .  
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g(x), which means $hat they are located in@'".  

Lemma 3. lkt an element f from be a fwiction from 6ff and l e t  G f  = ,h(x) 
t 

l i e  i n  Qff and l e t  f (x )  have continuous second derivatives.  Then, we have 
! 

1) Gf = -Af(x) + v(x)f(x); 

2) f i s  locpted i n  B1'* 
t, . 

Proof . Let g(x)' be an element fkom 6Pf. Then, since g i s  located i n  6 1698 

and f i n  31, eq.(6) i s  applicable. Since g and f are located i n  and G f  i n  

this equation i s  transformed i n t o  

or, i f  a p a r t i a l  integrat ion is  performed, i n to  

j q ( W W  = j o ( 2 ) ( - d f ( 2 ) + 1 ) ( d ) / ( s ) ) d 2 .  
r r 

Since @lr lies densely i n  8, it follows tha t  

and h(x) lying i n  @"is transformed in to  f lying i n  8", according t o  the  ex- 

planation of this space. 

Then, it only remains t o  demonstrate f o r  the case (4.) t h a t  f (x )  s a t i s f i e s  

t he  boundary condition (5).  The r e l a t ion  

which i s  val id  f o r  a l l  elements g(x) from @' states t h a t  this integral ,  extend- 

ing over KR+, vanishes as CJ -, 0. After conventional transformation, this W i l l  

f o r  a l l  functions g(x) from 6' . 
48 



7. Proof of Theorem 1A 

The continuation of our proof, depending on t h e  number n of independent 

variables, Will be separately performed. 

A. One Independent Variable, n = 1 

We are making use of t he  basic solution 

d2 of the operator A = - and form 
dx2 

where s,(x) i s  t o  be selected i n  accordance with Section 5.3. 

a function of x, i s  an element of (3' but not of 3' since the f i r s t  derivative 

d2 

Here, k5(x), as 

kS(x) i s  discontinuous a t  x = 5 .  The second derivative '-2 k&x) = . /699 
T dx 

to rq2. 
= Ak5(x), however, i s  again an element of 8'' and vanishes i n  ru and external 

lemma LA. For a l l  g from Q resp . h from 8 ,  

{ k ; h d x  i s  continuously different iable  
I' 

A k; A d a i s  continuous 
I' 

d d  i- ;tikq@dd.5 is  continuous'' 
;. 

i n  5 ,  i f  5 lies i n  rue 
- Proof. These properties can be assumed as known provided t h a t  the elements 

h, g are continuous o r  continuously different iable  functions. 

case they follow generally i f  it can be demonstrated tha t ,  for the  three functions 

However, i n  this 

1 d he = ; (k; + 8 - kc), ho a&+#, ha A ki+, 

36 See Section 5.2. 
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and f o r  gE = ks+E, the  forms 

remain bounded i n  E. T h i s  boundedness i s  d i rec t ly  determinable according t o  

the  def in i t ion  of k5(x). 

Then, the 5 in tegra ls  

k€,J = f k,drl .  
a - J  

are formed f o r  the  functions k5(x). 

- 5 I < S l i es  i n  ra.  We then have: 

Here, it w i l l  always be assumed tha t  Ix - 

Lemma 5A. The functions k (x) a re  once continuously different iable  and 5b 
piecewise twice continuously differentiable,  so  t h a t  

da -- dzY 4, J (4 == - d kt ,d(z )  = q.d(x) in ro. 
Hence, 

k ; , J ( x )  l i e s  i n  gf. 

- Proof. We can calculate  

External t o  TU, the  quantity kgp i s  a r b i t r a r i l y  often continuously differenti-/700 

able t o  x and outside of r@, we have ku = 0. From this, the statement i s  

derived 

Lema 6A. As 6 -, 0 and 5 = 5 6  + So, f o r  each g from 8, we have 

- Proof. The first statement follows from the  convergence 
d d -k;,d 3 - 

dX d X h. 



uniform i n  x except i n  a v i c in i ty  ]x - z0l < e of x = 5 0 .  However, 

j ( & k : , , d p o  d si + 0. 
I x-fol< 4 130. 

The second statement follows from the  uniform convergence 

A kl,d + e;,d Ak;,;a -+ A kiouts ide  of f a ,  ' 

Ak;,a+ef ,a  = 0 = Akg in ra. 
Now, we a re  i n  a posi t ion t o  prove the following theorem: 

Theorem 1.1A: 

6 l i e s  i n  Q t 9 .  

Let g be any element from 8. Then, according t o  lemma 5A and because of the  

f a c t  t ha t  k g  l i e s  i n  s', we obtain i n  accordance with Section 5.2 

d J = J ( e f ,d -kAkt ,d )  g d z +  f i & , d z g d z ;  s a  1 n 
I + - l l < d  r r 

Consequently, according t o  lemma 6A, a l imiting value g50 ex is t s  as 6 + 0 and 

5 = 56 -+ lo, resul t ing i n  

r i 

According t o  lemma @, gs i s  continuous i n  r, and, since a had been arbitrary, 

a lso i n  I-. Then, according t o  lemma 1, g i s  located i n  8" with g(x) = g x o  

Theorem 1.2A: 

31 l i e s  i n  6". 

- Proof . Let f be an element of 31 < (3 and l e t  Gf = h l i e  i n  Q. 

t o  theorem 1.1, f = f (x )  l i e s  i n  Q" so tha t ,  according t o  eq.(llA), the  follow- 

According 



The first two integrals ,  since v and f a re  continuous, are continuously dif-  

ferent iable  t o  5 ;  this i s  t r u e  a l so  f o r  t he  last in t eg ra l  according t o  lemma &A. 

Consequently, f (5 )  i s  continuousl3. different iable  t o  5 and, according t o  

l e m a  2, f l i e s  i n  

Theorem 1.3A: 

(31 l i e s  i n  311. 

c__ Proof. kt f be an element from 8 so  tha t  Gf l i es  i n @ .  Then, according 

t o  theorem 1.1, G f  = h w i l l  l i e  i n  Q'l and the representation (12A) i s  trans- 

' formed i n t o  

/(€I = 4 J ( a - i ,  (h(4-- -v(4/ (4W 

(138) 
r a  + j { k 6 ( s )  (w) - ~ ( 5 )  / (a) )  -1- d k(2) f ( . ) l  

roll - r,, 

Since, now, h i s  also continuous, a double d i f fe ren t ia t ion  w i l l  y ie ld  the con- 

tinuous function 

d l  e/(€) = - h ( f ) + t J ( E ) f ( t )  
+ 1 ( ~ k f ( " ( ~ ( ~ ~ - t J ( 2 ) / ( a ) ) + ~ d k ~ ( a ) ~ ( c ) ) d x .  d' 

ra/s - ra 

According t o  lemma 3, f w i l l  then be located i n  8''. 

8. Proof of Theorem 1B 

B. Two and Three IndeDendent Variables, n = 2: 3 

Instead of t he  basic solutions with 1 % -  E l  = \ I " (av- 6,)' 
* = I  

- 1  

1 1  

I i ( Z - E )  = - - 1 n 1 2 - ~ ~  ' for 71 = 2, 

for n = 3 

2 R  

K ( a -  6) = - - 
4n lz--61 
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l e t  us consider the  i t e r a t ed  basic solutions 

which are so selected t h a t  

AK” = K 

Then, we set m 
I’Q = kt (2) = S, (21 IP (Z - E ) .  

Except at  x = 5 ,  k (x) i s  twice continuously different iable;  however, 

(L k5(x))2dx and 

continuously different iable  and A2kg(x) is continuous. 

case f o r  A2kS(x) = 0 i n  I?,. 

C 
r s 

(Akg(x))”dx a l so  exist; Akg(x), except a t  x = 5 ,  i s  twice 
r ax 

This i s  even more so the  

Consequently, kg l ies”  i n  (3’ , Ak5 l i e s  i n  8’ , and A2k5 i n  Q”. Let the  

function v(x)AkS(x), lying i n  4’ , be denoted by vAkS. 

Lemma 4B. For a l l  h from 8,  g from Q, 

I Agk;hdx ,  i s  continuous 

i s  continuous 

I‘ 

1 A k,- h d 2, 
I’ 

[ V  A k thdx ,  i s  continuous 
r 

J k i h d X ,  i s  twice continuously different iable  
r 

a a  u & kh &gas  
r 

i s  continuously different iable  

i n  5 from r5 . 
The arguments can again be considered as known f o r  twice continuously 

different iable  functions h and g. Since these are dense i n  rg! resp. 8, with 



H resp. G as measure, it i s  suf f ic ien t  t o  demonstrate, at  e = (el, ..., en),  that :  

are elements he fo r  which hg dx remains bounded i n  le I ; 
2 

a 
I " (  5 v x  

r a kS+€, - 1 (k<+e - k ) are elements ge, f o r  which , p ( g  g ~ )  & 2) - 
a5 v 1 

remains bounded i n  18 I T h i s  boundedness can be taken d i rec t ly  

from the  properties of k5. 

Again, we w i l l  form the mean-square values 

Then, we have the  following: /703 
Lemma 5B. The function k (x) i s  three times continuously different iable  

S,6 

w h i l e  Akgp, except a t  x = I, i s  twice different iable;  we have 

- A kt , , i (x)  =' e;,a(x) in r,,. 
Hence, Ak5,G l ies  i n  $ . 
- Proof. If x is  located external t o  ro,  then k56 i s  a r b i t r a r i l y  often 

9 

continuously different iable;  however, within ro , we have 

k&d = j P ( X ' - -  q ) d q  
1 1 1 - i ~ ~  

and the  required properties of this in tegra l  a r e  known. 

kmma 6B. As 6 * 0 and 5 = 56 --t So, f o r  each h from Q, w e  have 

- Proof. The first two statements follow from the f a c t  that ,  uniformly i n  x, 

54 



except i n  a v i c in i ty  Ix - Sol  < 8 and tha t  there  

tends t o  zero simultaneously with c and 6 .  

The t h i r d  statement follows from the uniform convergence 

Now, we can d i r ec t ly  prove the  three theorems 1. 

Theorem 1.1B: 

tfl l i e s  i n  Q". 

- Proof. For f l  fromg:1, G f i  = h from& the  following i s  valid, taking 

Section 5.2 i n t o  consideration and allowing f o r  t he  f a c t  t ha t  Akg6 l i es  i n $  

and f i  i n  8: 

since f l  l i e s  i n  & and AkE6 i n g '  so tha t  eq.(6) i s  applicable here. 
-1 

Consecpently, according t o  lemma 6B, the  l imiting value fie, exists f o r  

6 -, 0 and 5 = 5 6  lor so tha t ,  i n  ray we have 
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f r c  r J A P k r f l d x  - r I v A k ; / , d x +  r I A k t h d x .  (m) 

According t o  lemma kB, f l S  i s  continuous i n  To and thus a l so  i n  r; according t o  

lemma 1, f l  l i e s  i n  Q'' with fl (x) = fix 

Theorem 1.2B: 

61 l ies  i n  6". 

- Proof. 

According t o  theorem 1.D, gl = gl(x) l i es  i n  Q" and, since kE6 l i es  i n + ' ,  

Let g l  l i e  i n G I ,  i.e., a l so  inB1 ,  and l e t  Ggl  = g l i e  i n @ .  

r) 

t he  following is  val id  according t o  Section 5.2: 

91 ( E )  = (A' k; (2) - v (2)  d 12; (x)} g1 (5) d T. 

r 

The first in t eg ra l  i s  continuously different iable  i n  ro near 5 ,  which i s  true 

a l so  f o r  t he  last term i n  accordance with lemma &Be Thus, g l (5)  i s  continuously 

different iable  i n  r. According t o  lemma 2, gl(x) then l i e s  i n  (9". 

Theorem 1.3B: 

82 l ies  i n $  . 
Proof. Let f2 l i e  i n &  and 

Gf,=  f ,  in GI, Gl f ,  = k in 8. 

According t o  theorems 1.lB and 1.2B, f1 = f l  (x) l i es  i n  @" and f 2  = f2(x) i n  6". 

The representation (12B) - because of k 

here - will then assume the  form 

i n  (3 and f l  i n s l ,  eq.(6) applies /705 5 



The twice continuous d i f f e ren t i ab i l i t y  of the  first two in tegra ls  follows 

i n  the  known manner when using the  continuous d i f f e ren t i ab i l i t y  of f2(x); from 

lemma 4B, there  follows the twice continuous d i f f e ren t i ab i l i t y  of t he  last term.. 

Consequently, according t o  lemma 3B, f a  (x) l i e s  i n  8". 

9. Discussion of the  SRectrum 

We w i l l  give simple conditions f o r  the behavior of t h e  auxi l iary poten t ia l  

v i n  the  case t h a t  t he  spectrum, i n  general 'or below a given bound, i s  an 

ordinary d iscre te  spectrum. 

Weylts conditions (Bib1.12.2). 

Rellich (Bibl.8). 

are b u i l t  up on the  concept of conplete continuity. 

These conditions complete* correspond t o  the  

I n  our method, we made use of a paper by Fr. 

Primarily, t he  theorems from P a r t  I, Section 7 are used which 

Theorem 5. For the  case (3),  (4) of the  f in i te  domain = K R :  The spectrum 

of G = - A f v i s  discrete ,  and an i n f i n i t e l y  increasing sequence of eigenvalues 

of f i n i t e  mult ipl ic i ty  exis ts .  

Theorem 6. For the  case (l), (2) of t he  i n f i n i t e  domain: Let the  auxiliary 

poten t ia l  v(x) increase uniformly t o  i n f i n i t y  as r = 1x1 -, a. 

Then, t he  spectrum of G = - A f v w i l l  be discrete ,  and an i n f i n i t e l y  in- 

creasing sequence of eigenvalues of f i n i t e  mult ipl ic i ty  w i l l  ex is t .  

Theorem ?-. For t h e  case (l), (2) of the  i n f i n i t e  domain: Let 

- ~ i m  v(z)  = 11, for 1.1 3 Po, 

Then, t he  spectrum of G = - A f v i s  d iscre te  below v,. 

As an e s sen t i a l  aid, we Will use PoincarGfs inequality (Bib1.4.2) f o r  

domains [x - 51 < 6 from r [which, i n  the case (2), a lso  are allowed t o  possess 

3t. With respect t o  Schr'ddinger? s hydrogen problem, see Courant-Hilbert 
(Bib1.2.7) e 
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x = 0 as vertex]: 

following i s  valid: 

A c > 0 exis t s  so that,  f o r  a l l  functions g from@, t h e  

- Proof. The proof, which i s  simple f o r  domains [x - 51 < 6, i s  noted /706 

here: 

- 51 < 6, we have 

It i s  suf f ic ien t  t o  assume g as lying i n  6'. I f  [XI - 51 < 6, [x2 - 

l g ( z ' ) - M ) l  5 i' 1 GiW, a 4, * * a )  zt)jdz, 

- -- (z;, . . ., z:-1, z,) 1 dz,. + J i at,,  

12, - il I < J  

-+: J L!- (z:, zg,z:, . . ., z;) 1 dz2 a x ,  
I %  - E 2  I < J  

+ ... 

I 2, - E,, I < J 

An integrat ion t o  x1 and x" Will yield 

However, t he  left-hand s ide i s  nothing other than 

2(26)" J g U d z - 2 {  [ gdz) ) .  
I2 - il < J I+-  <J 

T h i s  w i l l  produce eq.(&), with c = 2n. 

T h i s  inequal i ty  w i l l ' t h e n  lead t o  the following: 

- Lemma,. The forms 

with the  bounded function w(x), piecewise continuous i n  

i n  S' and then continued on 8, are completely continuous i n  (3 with  respect t o  G 

and first explained 



Proof. The domain Kp can be covered by a f ini te  sum C of strange squares 
5 

By summation of t he  Poincarg inequality, 

L__ 

[x - 5 1  < 6 with a r b i t r a r i l y  small 6. 

we obtain 

Taking eq.(3)@ according t o  t h e  def ini t ion of Pa r t  I i n t o  consideration, this , 

means t h a t  

continuity of K P  

Iw<x>I 5, 

g2dx i s  completely continuous with respect t o  G. The complete 

wg’dx is  then d i rec t ly  obtained from the  f ac t  tha t ,  with 

KP 

can be estimated, i n  which case the  right-hand s ide i s  recognized as completely 

continuous . 
For proving theorem 5, we refer t o  the lemma 18 i n  P a r t  I. Thus, it i s  1707 

suf f ic ien t  t o  prove the  complete continuity of 

resolve 

g2dx with respect t o  G. We ic 
jgvx= J gvz+ J $ a x  
I’ JiH-a K1t-(i, R 

and make use of the  inequality (1.1) i n  the  Appendix, with u = g .  

After averaging there  over P from R - CT t o  R and over 7 from R - CT t o  

R R - (5 i n  which case it i s  assumed tha t  R - CT > - t he  following is  obtained 
2 ’  2 ’  

from log ica l  estimates: 

f o r  example, with c1 = P + l ,  cZ = Q’lC. 

By substi tution, we obtain 
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and thus also the  statement, since the  first two terms on the  right-hand s ide 

are completely continuous according t o  the auxiliary theorem. 

For proving theorem 6, it is  suf f ic ien t  according t o  lemma 18 i n  Part  I, 

t o  demonstrate t ha t  g2dx i s  G completely continuous. 3;et 
r 

rn (e)  = Min v (x) 

f o r  x 2: P; then, the postulate of theorem 6 means that  

Now, the  following i s  obviously valid: 

and, i n  addition (see footnote on p.36), 

T h i s  const i tutes  the  statement 

For proving theorem 7, we resolve v(x) i n to  

v (2) = v+ (x) - w (z), 

where v'(x) and w(x) are continuous functions i n  r, selected so that 

i n  such a manner tha t  we have /708 

In  the  case (2)@, this argument i s  t o  e x h t  only  f o r  1x1 * P; conversely, 

' f o r  0 < 1x1 i P, we s t ipu la te  t ha t  

which is possible by suitable select ion without violat ing the continuity at  
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According t o  these findings, t he  form 

gwg = 1 w ( x ) g ' d x  

i n  6 is  bounded so t h a t  t he  following applies t o  t h e  form defined i n @ :  

9 G+g 2 vwJgldx, 
r 

where, i n  the  case (2)@, reference has been made t o  the  estimate (4). 
obviously 

Since 

v=(gGd z 9G+Y x !7Gg 

i s  valid, C? i n  (3 i s  closed. 

Since v+ accurately satisfies the  conditions of an auxiliary potent ia l ,  

t h e  spectral  analysis i s  applicable t o  the  form G+ Since i ts  lower bound 

evidently Theorem 7, namely, 

t h a t  t he  spectrum of the  operator G o r  of the  form G = cf + W i s  d iscre te  below 

Vm then follows d i r ec t ly  from theorem 17 (I), provided tha t  it can be demon- 

s t ra ted  t h a t  W i s  completely continuous with respect t o  G+ i n  8 or - which i s  

equivalent because of eq.(;;) - with respect t o  G. 

i s  v,, this form Will have no spectrum below v,. 

>c 

If then 

it follows from w(x) 0 f o r  1x1 + m t h a t  

m ( e ) + 0 ,  for e 3  00,  

We now have 

w g ' d x  vw J g % d x +  *(Q) J g%dx.  
4 r- 

Because of g2dx 5 gGg, this const i tutes  the  complete continuity of W according 
r 
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t o  t he  def in i t ion  given i n  Par t  I. 

10. Amendix 

1. Integral Inequal i t ies  

m 

Iet u(x) be a function of x = (XI, ... h) piecewise continuously differ- 

ent iable  i n  0 < r < R. Then, t he  inequality 

' 1 fp- (1.0) 
s vcle-rl 

exists f o r  

t 

w i t h O < p < P ,  O < T < P ,  ~ < p .  

- Proof. Iet x = I with I I I = 1 be a point on 01; then, 

By integrat ing over 01 and applying t h e  Schwarz inequal i ty  t o  the  left-hand side, 

we obtain 

and, from this, the  inequality (1.0). 

The inequal i ty  (1.0) Will then yield 

with Kp,T instead of &,p f o r  T > p.  
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2. SinEculadts of t he  Auxiliary Potent ia l  

with / 

Iet u(x) be piecewise continuously d i f fe ren t iab le  for 0 < r 5 P 

x = x  ,,... #xm;  n==1,2,3. , . ,  

Then, t h e  fo l laJ ing  inequality exists f o r  0 < 0 < p P: 

n - i  1 
ffl((r) = -- - 

2 r  

- Proof. We have 

Lemmas : 

( 2.1) . The quantity 

does not decrease as cs -, 0. 

The proof follows d i r ec t ly  from the above presentation of TO$. 

(2.2). One pos i t ive  constant k exists so that ,  f o r  suf f ic ien t ly  small 

a(o 5 ao), t h e  foUowing holds: 

T ~ , P  2 - k J u*dz. 
he,,, p 

- Proof. I;et 01 be such a number between 00 and P t h a t  we obtain 

ut-l j u2dwEPT 1 usax 

4, Kilo, P 

Then, f o r  0 00 and because of Tqp * Gl,p , we obtain 
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If, now, k = Max [-+ cp (a11 pa(,)] in go 5; r p, .it follows t h a t  

and thus also the  statement. 

(2.3) 

and 

dx exis ts ,  then f o r  n 2 2, 
K P  

exists. 

- Proof. From eq.(2.0), because of y(r )  > 0, the boundedness of cp2(r)u2dx 

i n  (J follows d i r ec t ly  and thus a l so  the  existence of 
P 

From the existence of this i n t eg ra l  and the nonexistence of 
P 

it follows tha t  a special  sequence p + 0 ex i s t s  for which 

From eq.(2.0) we can then conclude tha t ,  f o r  each sequence, (5 -, 0 applies. 

3) Proof of Green's Transfomnation 

To prove 

f o r  f i n  8 and g i n  8' , we first w i l l  integrate  only over &,p: 



where CJ # 0 need be selected only i n  t he  case (2). Then, it must be demon= 

s t ra ted  tha t  special  sequences p -)m resp. p -+ R and CJ -, 0 exist f o r  which t h e  

right-hand sides vanish. 

Case (1): From the  existence of the in t eg ra l  

there  follows the  existence of a sequence p a, f o r  which 

Case (2) : 

From the  existence of 1 q2 (r)g2dx and from the  existence of 

The sequence P + 03 i s  selected as i n  t h e  case (1) . 
K P  

m 

h'p 

t he  existence of 

P 

is obtained. 

be concluded t h a t  a sequence CJ -, 0 exists f o r  which 

From this existence and from the  nonexistence of cp(r)dr, it can 
0 

as desired. 

Case (3): See a l so  Courant (Bib1.2.5); from the  existence of t h e  i n t e g r a l  
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t he re  follows t he  existence of a sequence p + R, such tha t  

From the  boundary c o n a t i o n  (1%) on p.46, 

it follows on the  other hand tha t  J g 2 & + 0 .  
R - p  62- Conse guently, - -P 

Case (4.2: Here, the  boundary condition already means the  required con- 

(p-1. g;i-?aa,40. s vergence 

sQ 

Auxiliary theorem. In t h e  case (l), it follows, f o r  piecewise twice /713 

continuously different iable  functions f (x)  from Q t t  f o r  which Af(x) + v(x)f(x) 

i s  a function from @' , t h a t  

exists, so tha t  f l i es  i n $  

This i s  so since 

m 

Because of t h e  existence of r"" Pdwdr, a sequence p + 03 must exist 
0 0, 
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i n  whose v ic in i ty  / fadw decreases so tha t  there  
L-6, Q; 

- d  d i  j / ' d o  = 2 I / $ T t d w  
?r Qr 

becomes negative. 

bounded and, since the  integrand i s  posit ive,  the  in tegra l  exists over K,,, = 

Cqnsequently, f o r  this sequence, the  left-hand s ide remains 

It is demonstrate@ here tha t  t he  case (1) represents the  Limiting point 

case i n  the  sense of Weyl. 
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